Solveeit Logo

Question

Question: $\tan^2 36^{\circ} \tan^2 72^{\circ} = 5.$...

tan236tan272=5.\tan^2 36^{\circ} \tan^2 72^{\circ} = 5.

Answer

True

Explanation

Solution

The problem asks us to verify if the statement tan236tan272=5\tan^2 36^{\circ} \tan^2 72^{\circ} = 5 is true.

To verify this, we need to find the values of tan236\tan^2 36^{\circ} and tan272\tan^2 72^{\circ}.

Step 1: Calculate tan236\tan^2 36^{\circ}

We know the value of cos36\cos 36^{\circ}: cos36=5+14\cos 36^{\circ} = \frac{\sqrt{5}+1}{4}

Now, we find sin236\sin^2 36^{\circ} using the identity sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta:

sin236=1(5+14)2=1(5)2+12+2516=15+1+2516\sin^2 36^{\circ} = 1 - \left(\frac{\sqrt{5}+1}{4}\right)^2 = 1 - \frac{(\sqrt{5})^2 + 1^2 + 2\sqrt{5}}{16} = 1 - \frac{5+1+2\sqrt{5}}{16} =16+2516=16(6+25)16=102516= 1 - \frac{6+2\sqrt{5}}{16} = \frac{16 - (6+2\sqrt{5})}{16} = \frac{10-2\sqrt{5}}{16}

Now, we can find tan236=sin236cos236\tan^2 36^{\circ} = \frac{\sin^2 36^{\circ}}{\cos^2 36^{\circ}}:

tan236=1025166+2516=10256+25\tan^2 36^{\circ} = \frac{\frac{10-2\sqrt{5}}{16}}{\frac{6+2\sqrt{5}}{16}} = \frac{10-2\sqrt{5}}{6+2\sqrt{5}}

To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator, which is 6256-2\sqrt{5}:

tan236=10256+25×625625=10(6)10(25)25(6)+25(25)62(25)2\tan^2 36^{\circ} = \frac{10-2\sqrt{5}}{6+2\sqrt{5}} \times \frac{6-2\sqrt{5}}{6-2\sqrt{5}} = \frac{10(6) - 10(2\sqrt{5}) - 2\sqrt{5}(6) + 2\sqrt{5}(2\sqrt{5})}{6^2 - (2\sqrt{5})^2} =60205125+4(5)364(5)=60325+203620=8032516= \frac{60 - 20\sqrt{5} - 12\sqrt{5} + 4(5)}{36 - 4(5)} = \frac{60 - 32\sqrt{5} + 20}{36 - 20} = \frac{80 - 32\sqrt{5}}{16} tan236=16(525)16=525\tan^2 36^{\circ} = \frac{16(5 - 2\sqrt{5})}{16} = 5 - 2\sqrt{5}

Step 2: Calculate tan272\tan^2 72^{\circ}

We use the identity tan72=tan(9018)=cot18\tan 72^{\circ} = \tan (90^{\circ} - 18^{\circ}) = \cot 18^{\circ}. So, tan272=cot218=cos218sin218\tan^2 72^{\circ} = \cot^2 18^{\circ} = \frac{\cos^2 18^{\circ}}{\sin^2 18^{\circ}}.

We know the value of sin18\sin 18^{\circ}: sin18=514\sin 18^{\circ} = \frac{\sqrt{5}-1}{4}

Now, we find sin218\sin^2 18^{\circ}:

sin218=(514)2=(5)2+122516=5+12516=62516\sin^2 18^{\circ} = \left(\frac{\sqrt{5}-1}{4}\right)^2 = \frac{(\sqrt{5})^2 + 1^2 - 2\sqrt{5}}{16} = \frac{5+1-2\sqrt{5}}{16} = \frac{6-2\sqrt{5}}{16}

Next, we find cos218\cos^2 18^{\circ} using cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta:

cos218=162516=16(625)16=10+2516\cos^2 18^{\circ} = 1 - \frac{6-2\sqrt{5}}{16} = \frac{16 - (6-2\sqrt{5})}{16} = \frac{10+2\sqrt{5}}{16}

Now, we can find tan272\tan^2 72^{\circ}:

tan272=10+251662516=10+25625\tan^2 72^{\circ} = \frac{\frac{10+2\sqrt{5}}{16}}{\frac{6-2\sqrt{5}}{16}} = \frac{10+2\sqrt{5}}{6-2\sqrt{5}}

To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator, which is 6+256+2\sqrt{5}:

tan272=10+25625×6+256+25=10(6)+10(25)+25(6)+25(25)62(25)2\tan^2 72^{\circ} = \frac{10+2\sqrt{5}}{6-2\sqrt{5}} \times \frac{6+2\sqrt{5}}{6+2\sqrt{5}} = \frac{10(6) + 10(2\sqrt{5}) + 2\sqrt{5}(6) + 2\sqrt{5}(2\sqrt{5})}{6^2 - (2\sqrt{5})^2} =60+205+125+4(5)364(5)=60+325+203620=80+32516= \frac{60 + 20\sqrt{5} + 12\sqrt{5} + 4(5)}{36 - 4(5)} = \frac{60 + 32\sqrt{5} + 20}{36 - 20} = \frac{80 + 32\sqrt{5}}{16} tan272=16(5+25)16=5+25\tan^2 72^{\circ} = \frac{16(5 + 2\sqrt{5})}{16} = 5 + 2\sqrt{5}

Step 3: Calculate the product tan236tan272\tan^2 36^{\circ} \tan^2 72^{\circ}

Now we multiply the values we found:

tan236tan272=(525)(5+25)\tan^2 36^{\circ} \tan^2 72^{\circ} = (5 - 2\sqrt{5})(5 + 2\sqrt{5})

This is in the form of (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2, where a=5a=5 and b=25b=2\sqrt{5}.

=52(25)2=25(4×5)=2520=5= 5^2 - (2\sqrt{5})^2 = 25 - (4 \times 5) = 25 - 20 = 5

Thus, the statement tan236tan272=5\tan^2 36^{\circ} \tan^2 72^{\circ} = 5 is true.