Question
Question: $\tan^2 36^{\circ} \tan^2 72^{\circ} = 5.$...
tan236∘tan272∘=5.

True
Solution
The problem asks us to verify if the statement tan236∘tan272∘=5 is true.
To verify this, we need to find the values of tan236∘ and tan272∘.
Step 1: Calculate tan236∘
We know the value of cos36∘: cos36∘=45+1
Now, we find sin236∘ using the identity sin2θ=1−cos2θ:
sin236∘=1−(45+1)2=1−16(5)2+12+25=1−165+1+25 =1−166+25=1616−(6+25)=1610−25Now, we can find tan236∘=cos236∘sin236∘:
tan236∘=166+251610−25=6+2510−25To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator, which is 6−25:
tan236∘=6+2510−25×6−256−25=62−(25)210(6)−10(25)−25(6)+25(25) =36−4(5)60−205−125+4(5)=36−2060−325+20=1680−325 tan236∘=1616(5−25)=5−25Step 2: Calculate tan272∘
We use the identity tan72∘=tan(90∘−18∘)=cot18∘. So, tan272∘=cot218∘=sin218∘cos218∘.
We know the value of sin18∘: sin18∘=45−1
Now, we find sin218∘:
sin218∘=(45−1)2=16(5)2+12−25=165+1−25=166−25Next, we find cos218∘ using cos2θ=1−sin2θ:
cos218∘=1−166−25=1616−(6−25)=1610+25Now, we can find tan272∘:
tan272∘=166−251610+25=6−2510+25To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator, which is 6+25:
tan272∘=6−2510+25×6+256+25=62−(25)210(6)+10(25)+25(6)+25(25) =36−4(5)60+205+125+4(5)=36−2060+325+20=1680+325 tan272∘=1616(5+25)=5+25Step 3: Calculate the product tan236∘tan272∘
Now we multiply the values we found:
tan236∘tan272∘=(5−25)(5+25)This is in the form of (a−b)(a+b)=a2−b2, where a=5 and b=25.
=52−(25)2=25−(4×5)=25−20=5Thus, the statement tan236∘tan272∘=5 is true.