Question
Question: If the equation $ax^2 + 3xy - 2y^2 - 5x + 5y + c = 0$ represents a pair of perpendicular lines, the ...
If the equation ax2+3xy−2y2−5x+5y+c=0 represents a pair of perpendicular lines, the value of a + c is

A
1
B
-1
C
2
D
-2
Answer
-1
Explanation
Solution
The general equation of a pair of straight lines is Ax2+2Hxy+By2+2Gx+2Fy+C=0.
Given equation: ax2+3xy−2y2−5x+5y+c=0.
Comparing coefficients: A=a,H=3/2,B=−2,G=−5/2,F=5/2,C=c.
For the lines to be perpendicular, A+B=0. a+(−2)=0⟹a=2.
For the equation to represent a pair of straight lines, the determinant Δ=ABC+2FGH−AF2−BG2−CH2=0.
Substitute the values: (2)(−2)(c)+2(5/2)(−5/2)(3/2)−(2)(5/2)2−(−2)(−5/2)2−(c)(3/2)2=0 −4c+2(−75/8)−2(25/4)+2(25/4)−c(9/4)=0 −4c−75/4−25/2+25/2−9c/4=0 −4c−75/4−9c/4=0
Multiply by 4: −16c−75−9c=0 −25c=75 c=−3.
We need to find a+c=2+(−3)=−1.