Solveeit Logo

Question

Question: If the equation $ax^2 + 3xy - 2y^2 - 5x + 5y + c = 0$ represents a pair of perpendicular lines, the ...

If the equation ax2+3xy2y25x+5y+c=0ax^2 + 3xy - 2y^2 - 5x + 5y + c = 0 represents a pair of perpendicular lines, the value of a + c is

A

1

B

-1

C

2

D

-2

Answer

-1

Explanation

Solution

The general equation of a pair of straight lines is Ax2+2Hxy+By2+2Gx+2Fy+C=0Ax^2 + 2Hxy + By^2 + 2Gx + 2Fy + C = 0.

Given equation: ax2+3xy2y25x+5y+c=0ax^2 + 3xy - 2y^2 - 5x + 5y + c = 0.

Comparing coefficients: A=a,H=3/2,B=2,G=5/2,F=5/2,C=cA = a, H = 3/2, B = -2, G = -5/2, F = 5/2, C = c.

For the lines to be perpendicular, A+B=0A + B = 0. a+(2)=0    a=2a + (-2) = 0 \implies a = 2.

For the equation to represent a pair of straight lines, the determinant Δ=ABC+2FGHAF2BG2CH2=0\Delta = ABC + 2FGH - AF^2 - BG^2 - CH^2 = 0.

Substitute the values: (2)(2)(c)+2(5/2)(5/2)(3/2)(2)(5/2)2(2)(5/2)2(c)(3/2)2=0(2)(-2)(c) + 2(5/2)(-5/2)(3/2) - (2)(5/2)^2 - (-2)(-5/2)^2 - (c)(3/2)^2 = 0 4c+2(75/8)2(25/4)+2(25/4)c(9/4)=0-4c + 2(-75/8) - 2(25/4) + 2(25/4) - c(9/4) = 0 4c75/425/2+25/29c/4=0-4c - 75/4 - 25/2 + 25/2 - 9c/4 = 0 4c75/49c/4=0-4c - 75/4 - 9c/4 = 0

Multiply by 4: 16c759c=0-16c - 75 - 9c = 0 25c=75-25c = 75 c=3c = -3.

We need to find a+c=2+(3)=1a + c = 2 + (-3) = -1.