Solveeit Logo

Question

Question: The negation of the statement $(p \land q) \rightarrow (\sim p \lor r)$ is [2023]...

The negation of the statement (pq)(pr)(p \land q) \rightarrow (\sim p \lor r) is [2023]

A

pqrp \land q \land \sim r

B

pqrp \land q \land \sim r

Answer

pqrp\land q\land\sim r (Both options (a) and (b) yield the same correct result.)

Explanation

Solution

To negate an implication, we use the equivalence

¬(AB)A¬B\neg (A\to B) \equiv A\land\neg B.

Here, A(pq)A \equiv (p\land q) and B(pr)B \equiv (\sim p\lor r). Thus,

¬((pq)(pr))=(pq)¬(pr)\neg((p\land q)\to (\sim p\lor r)) = (p\land q)\land\neg(\sim p\lor r).

Now, apply De Morgan's law to ¬(pr)\neg(\sim p\lor r):

¬(pr)=pr\neg(\sim p\lor r) = p\land\sim r.

So, combining we get:

(pq)(pr)=pqr(p\land q)\land (p\land\sim r) = p\land q\land\sim r.