Question
Question: The negation of the statement $(p \land q) \rightarrow (\sim p \lor r)$ is [2023]...
The negation of the statement (p∧q)→(∼p∨r) is [2023]
A
p∧q∧∼r
B
p∧q∧∼r
Answer
p∧q∧∼r (Both options (a) and (b) yield the same correct result.)
Explanation
Solution
To negate an implication, we use the equivalence
¬(A→B)≡A∧¬B.
Here, A≡(p∧q) and B≡(∼p∨r). Thus,
¬((p∧q)→(∼p∨r))=(p∧q)∧¬(∼p∨r).
Now, apply De Morgan's law to ¬(∼p∨r):
¬(∼p∨r)=p∧∼r.
So, combining we get:
(p∧q)∧(p∧∼r)=p∧q∧∼r.