Solveeit Logo

Question

Question: The negation of the statement pattern $\sim s \vee (\sim r \wedge s)$ is [2023] equivalent to...

The negation of the statement pattern s(rs)\sim s \vee (\sim r \wedge s) is [2023] equivalent to

A

srs \wedge r

B

s(rs)s \wedge (r \wedge \sim s)

C

srs \wedge \sim r

D

s(rs)s \vee (r \vee \sim s)

Answer

srs \wedge r

Explanation

Solution

Given the statement

s(rs)\sim s \vee (\sim r \wedge s)

we need to find its negation.

  1. Negate the statement using De Morgan's law:
¬[s(rs)]=¬(s)¬(rs)\neg\left[\sim s \vee (\sim r \wedge s)\right] = \neg(\sim s) \wedge \neg(\sim r \wedge s)
  1. Simplify each part:
  • ¬(s)=s\neg(\sim s) = s
  • ¬(rs)=¬(r)¬s=r¬s\neg(\sim r \wedge s) = \neg(\sim r) \vee \neg s = r \vee \neg s

So, we have:

s(r¬s)s \wedge (r \vee \neg s)
  1. Distribute and simplify:
s(r¬s)=(sr)(s¬s)s \wedge (r \vee \neg s) = (s \wedge r) \vee (s \wedge \neg s)

But s¬ss \wedge \neg s is always false, hence the expression simplifies to:

srs \wedge r

Thus, the negation is equivalent to srs \wedge r.