Solveeit Logo

Question

Question: A rod of length L is hinged at one end and it is rotated with a constant angular velocity in a horiz...

A rod of length L is hinged at one end and it is rotated with a constant angular velocity in a horizontal plane. Let T1T_1 and T2T_2 be the tensions at the points L/4 and 3L/4 away from the hinged end.

A

T1>T2T_1>T_2

B

T2>T1T_2>T_1

C

T1=T2T_1=T_2

Answer

Tension T1T_1 is greater than tension T2T_2 (T1>T2T_1 > T_2).

Explanation

Solution

The tension at any point in a rotating rod is due to the centripetal force required to keep the segment of the rod beyond that point in circular motion.

Let the rod have a total mass MM and length LL. Its linear mass density is λ=ML\lambda = \frac{M}{L}.

Consider a small element of the rod of length drdr at a distance rr from the hinged end. The mass of this element is dm=λdrdm = \lambda dr. This element, rotating with angular velocity ω\omega, experiences a centripetal force dF=dmω2r=(λdr)ω2rdF = dm \omega^2 r = (\lambda dr) \omega^2 r.

The tension T(r0)T(r_0) at a distance r0r_0 from the hinged end is the sum of the centripetal forces acting on all the mass elements from r0r_0 to LL. This can be found by integrating dFdF from r0r_0 to LL:

T(r0)=r0Lλω2rdrT(r_0) = \int_{r_0}^{L} \lambda \omega^2 r dr T(r0)=λω2r0LrdrT(r_0) = \lambda \omega^2 \int_{r_0}^{L} r dr T(r0)=λω2[r22]r0LT(r_0) = \lambda \omega^2 \left[ \frac{r^2}{2} \right]_{r_0}^{L} T(r0)=λω22(L2r02)T(r_0) = \frac{\lambda \omega^2}{2} (L^2 - r_0^2)

Substitute λ=ML\lambda = \frac{M}{L}:

T(r0)=Mω22L(L2r02)T(r_0) = \frac{M \omega^2}{2L} (L^2 - r_0^2)

Now, we calculate the tensions T1T_1 and T2T_2:

  1. Tension T1T_1 at r0=L/4r_0 = L/4:

    T1=Mω22L(L2(L4)2)T_1 = \frac{M \omega^2}{2L} \left( L^2 - \left(\frac{L}{4}\right)^2 \right) T1=Mω22L(L2L216)T_1 = \frac{M \omega^2}{2L} \left( L^2 - \frac{L^2}{16} \right) T1=Mω22L(16L2L216)T_1 = \frac{M \omega^2}{2L} \left( \frac{16L^2 - L^2}{16} \right) T1=Mω22L(15L216)T_1 = \frac{M \omega^2}{2L} \left( \frac{15L^2}{16} \right) T1=15Mω2L32T_1 = \frac{15 M \omega^2 L}{32}

  2. Tension T2T_2 at r0=3L/4r_0 = 3L/4:

    T2=Mω22L(L2(3L4)2)T_2 = \frac{M \omega^2}{2L} \left( L^2 - \left(\frac{3L}{4}\right)^2 \right) T2=Mω22L(L29L216)T_2 = \frac{M \omega^2}{2L} \left( L^2 - \frac{9L^2}{16} \right) T2=Mω22L(16L29L216)T_2 = \frac{M \omega^2}{2L} \left( \frac{16L^2 - 9L^2}{16} \right) T2=Mω22L(7L216)T_2 = \frac{M \omega^2}{2L} \left( \frac{7L^2}{16} \right) T2=7Mω2L32T_2 = \frac{7 M \omega^2 L}{32}

Comparison:

Comparing T1=15Mω2L32T_1 = \frac{15 M \omega^2 L}{32} and T2=7Mω2L32T_2 = \frac{7 M \omega^2 L}{32}:

Since 15>715 > 7, it is clear that T1>T2T_1 > T_2. This is expected because the tension is maximum at the hinge and decreases as we move towards the free end (where it is zero). The point L/4L/4 is closer to the hinge than 3L/43L/4.