Solveeit Logo

Question

Question: 4^{5log_{4\sqrt{2}}(3-\sqrt{6})-6log_{8}(\sqrt{3}-\sqrt{2})}...

4^{5log_{4\sqrt{2}}(3-\sqrt{6})-6log_{8}(\sqrt{3}-\sqrt{2})}

Answer

9

Explanation

Solution

  1. Convert logarithm bases to 2: 42=25/24\sqrt{2} = 2^{5/2} and 8=238 = 2^3.
  2. Simplify exponent terms: 5log42(36)=515/2log2(36)=2log2(36)5log_{4\sqrt{2}}(3-\sqrt{6}) = 5 \cdot \frac{1}{5/2} log_2(3-\sqrt{6}) = 2 log_2(3-\sqrt{6}). 6log8(32)=613log2(32)=2log2(32)6log_{8}(\sqrt{3}-\sqrt{2}) = 6 \cdot \frac{1}{3} log_2(\sqrt{3}-\sqrt{2}) = 2 log_2(\sqrt{3}-\sqrt{2}).
  3. Combine terms: 2log2(36)2log2(32)=2log2(3632)2 log_2(3-\sqrt{6}) - 2 log_2(\sqrt{3}-\sqrt{2}) = 2 log_2\left(\frac{3-\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right).
  4. Simplify the argument: 3632=3(32)32=3\frac{3-\sqrt{6}}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}} = \sqrt{3}.
  5. The exponent becomes 2log2(3)=log2((3)2)=log2(3)2 log_2(\sqrt{3}) = log_2((\sqrt{3})^2) = log_2(3).
  6. Evaluate the expression: 4log2(3)=(22)log2(3)=22log2(3)=2log2(32)=2log2(9)=94^{log_2(3)} = (2^2)^{log_2(3)} = 2^{2 \cdot log_2(3)} = 2^{log_2(3^2)} = 2^{log_2(9)} = 9.