Question
Question: 4^{5log_{4\sqrt{2}}(3-\sqrt{6})-6log_{8}(\sqrt{3}-\sqrt{2})}...
4^{5log_{4\sqrt{2}}(3-\sqrt{6})-6log_{8}(\sqrt{3}-\sqrt{2})}

Answer
9
Explanation
Solution
- Convert logarithm bases to 2: 42=25/2 and 8=23.
- Simplify exponent terms: 5log42(3−6)=5⋅5/21log2(3−6)=2log2(3−6). 6log8(3−2)=6⋅31log2(3−2)=2log2(3−2).
- Combine terms: 2log2(3−6)−2log2(3−2)=2log2(3−23−6).
- Simplify the argument: 3−23−6=3−23(3−2)=3.
- The exponent becomes 2log2(3)=log2((3)2)=log2(3).
- Evaluate the expression: 4log2(3)=(22)log2(3)=22⋅log2(3)=2log2(32)=2log2(9)=9.