Question
Question: An element A crystalizes in a Fcc structure. \(200g\) of this element has \(4.12 \times {10^{24}}\) ...
An element A crystalizes in a Fcc structure. 200g of this element has 4.12×1024 atoms. The density of A is 7.2gcm−3 . Calculate the edge length of the unit cell.
26.97×10−24cm
299.9pm
5×10−12cm
2.99cm
299.9 pm
Solution
-
Determine atomic mass (M):
Total atoms = 4.12×10²⁴ in 200 g
One atom weighs = 200 g/(4.12×10²⁴)
Thus, atomic weight M = (200/4.12×10²⁴)×(6.022×10²³) ≈ 29.23 g/mol -
Relate density (ρ), atomic mass (M) & unit cell volume (a³):
For FCC, number of atoms per cell Z = 4
When a is in pm, unit cell volume [in cm³] = a³×10^(–30)
Density formula:
ρ = (Z×M) / (a³ × Nₐ × 10^(–30))
Solve for a³:
a³ = (Z×M×10^(30)) / (ρ×Nₐ) -
Substitute values:
a³ = (4×29.23×10^(30)) / (7.2×6.022×10²³)
= (116.92×10^(30)) / (43.3584×10²³)
≈ 26.97×10⁶ (pm³) -
Find edge length:
a = (26.97×10⁶)^(1/3) ≈ 299.9 pm