Solveeit Logo

Question

Question: On a certain day, the vapour pressure is 24 mm of Hg for water vapour in air at 300 K. The saturated...

On a certain day, the vapour pressure is 24 mm of Hg for water vapour in air at 300 K. The saturated vapour pressure is 26.463 mm. How many moles of water vapour per litre of air would be required to saturate the air at this temperature?

A

0.1

B

0.0132

C

1.32 x 10410^{-4}

D

7.60

Answer

1.32 x 10410^{-4}

Explanation

Solution

The pressure difference is ΔP=26.463 mm Hg24 mm Hg=2.463 mm Hg\Delta P = 26.463 \text{ mm Hg} - 24 \text{ mm Hg} = 2.463 \text{ mm Hg}. Convert ΔP\Delta P to atm: ΔP=2.463760 atm\Delta P = \frac{2.463}{760} \text{ atm}. Using the ideal gas law PV=nRTPV = nRT, we solve for nn: n=ΔP×VR×T=(2.463760 atm)×(1 L)(0.0821 L atm mol1 K1)×(300 K)1.303×104n = \frac{\Delta P \times V}{R \times T} = \frac{\left(\frac{2.463}{760} \text{ atm}\right) \times (1 \text{ L})}{(0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}) \times (300 \text{ K})} \approx 1.303 \times 10^{-4} moles.