Solveeit Logo

Question

Question: A fly wheel of M.I. 6 x $10^{-2}$ kgm² is rotating with an angular velocity of 20 rads$^{-1}$. The t...

A fly wheel of M.I. 6 x 10210^{-2} kgm² is rotating with an angular velocity of 20 rads1^{-1}. The torque required to bring it to rest in 4s is :

A

1.6 N m

B

0.6 Nm

C

0.8Nm

D

0.3 N m

Answer

0.3 N m

Explanation

Solution

To bring the flywheel to rest, a torque must be applied that causes deceleration.

1. Calculate the angular acceleration (α\alpha): We are given: Initial angular velocity (ω0\omega_0) = 20 rad/s Final angular velocity (ω\omega) = 0 rad/s (since it comes to rest) Time (tt) = 4 s

Using the first equation of rotational motion:

ω=ω0+αt\omega = \omega_0 + \alpha t

Substituting the given values:

0=20+α(4)0 = 20 + \alpha (4) 20=4α-20 = 4\alpha α=204\alpha = \frac{-20}{4} α=5 rad/s2\alpha = -5 \text{ rad/s}^2

The negative sign indicates deceleration. For calculating the magnitude of the torque, we use the magnitude of angular acceleration, α=5 rad/s2|\alpha| = 5 \text{ rad/s}^2.

2. Calculate the torque (τ\tau): We are given: Moment of Inertia (II) = 6 x 10210^{-2} kgm² Angular acceleration (α|\alpha|) = 5 rad/s²

Using the relationship between torque, moment of inertia, and angular acceleration:

τ=Iα\tau = I \alpha

Substituting the values:

τ=(6×102 kgm2)×(5 rad/s2)\tau = (6 \times 10^{-2} \text{ kgm}^2) \times (5 \text{ rad/s}^2) τ=30×102 N m\tau = 30 \times 10^{-2} \text{ N m} τ=0.3 N m\tau = 0.3 \text{ N m}

The torque required to bring the flywheel to rest is 0.3 N m.