Solveeit Logo

Question

Question: If g(x) = [f(2f(x) + 2)]² and f(0) = -1. f'(0) = 1, then g'(0) is...

If g(x) = [f(2f(x) + 2)]² and f(0) = -1. f'(0) = 1, then g'(0) is

A

-4

B

4

C

-3

D

3

Answer

-4

Explanation

Solution

Given:

g(x)=[f(2f(x)+2)]2g(x) = \left[ f\Big(2f(x)+2\Big) \right]^2

Differentiate using the chain rule:

g(x)=2f(2f(x)+2)f(2f(x)+2)ddx(2f(x)+2)g'(x) = 2f(2f(x)+2) \cdot f'(2f(x)+2) \cdot \frac{d}{dx}(2f(x)+2)

Since ddx(2f(x)+2)=2f(x)\frac{d}{dx}(2f(x)+2) = 2f'(x), we have:

g(x)=4f(2f(x)+2)f(2f(x)+2)f(x)g'(x) = 4\, f(2f(x)+2) \, f'(2f(x)+2) \, f'(x)

At x=0x = 0:

  • f(0)=1f(0) = -1
  • f(0)=1f'(0) = 1
  • Compute 2f(0)+2=2(1)+2=02f(0)+2 = 2(-1)+2 = 0 Thus,
  • f(2f(0)+2)=f(0)=1f(2f(0)+2) = f(0) = -1
  • f(2f(0)+2)=f(0)=1f'(2f(0)+2) = f'(0) = 1

Substitute these values:

g(0)=4×(1)×1×1=4g'(0) = 4 \times (-1) \times 1 \times 1 = -4