Question
Question: If g(x) = [f(2f(x) + 2)]² and f(0) = -1. f'(0) = 1, then g'(0) is...
If g(x) = [f(2f(x) + 2)]² and f(0) = -1. f'(0) = 1, then g'(0) is
A
-4
B
4
C
-3
D
3
Answer
-4
Explanation
Solution
Given:
g(x)=[f(2f(x)+2)]2Differentiate using the chain rule:
g′(x)=2f(2f(x)+2)⋅f′(2f(x)+2)⋅dxd(2f(x)+2)Since dxd(2f(x)+2)=2f′(x), we have:
g′(x)=4f(2f(x)+2)f′(2f(x)+2)f′(x)At x=0:
- f(0)=−1
- f′(0)=1
- Compute 2f(0)+2=2(−1)+2=0 Thus,
- f(2f(0)+2)=f(0)=−1
- f′(2f(0)+2)=f′(0)=1
Substitute these values:
g′(0)=4×(−1)×1×1=−4