Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 02πcos5xdx∫^{2π}_0 cos^5 xdx

Answer

Let I=02πcos5xdx...(1)∫^{2π}_0 cos^5 xdx...(1)

cos5(2πx)=cos5xcos^5(2π-x)=cos^5x

It is known that,

02aƒ(x)dx=20aƒ(x)dx,ifƒ(2ax)=ƒ(x)∫^{2a}_0ƒ(x)dx=2∫^a_0ƒ(x)dx,if\, ƒ(2a-x)=ƒ(x)

=0ifƒ(2ax)=ƒ(x)=0\,\, if\,\, ƒ(2a-x)=-ƒ(x)

I=20πcos5xdx∴I=2∫^π_0cos^5 xdx

I=2(0)=0[cos5(πx)=cos5x]⇒I=2(0)=0 \,\,\,\,[cos^5(π-x)=-cos^5x]