Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0πxdx1+sinx∫_0^π\frac{xdx}{1+sinx}

Answer

Let I=0πxdx1+sinx.....(1)∫_0^π\frac{xdx}{1+sinx}.....(1)

I=0π(πx)1+sin(πxdx(0aƒ(x)dx=0aƒ(ax)dx)⇒I=∫^π_0\frac{(π-x)}{1+sin(π-x}dx (∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)

I=0π(πx)1+sinxdx...(2)⇒I=∫^π_0\frac{(π-x)}{1+sinx}dx...(2)

Adding(1)and(2),weobtainAdding(1)and(2),we obtain

2=0π(π)1+sinxdx⇒2=∫^π_0\frac{(π)}{1+sinx}dx

2I=π0π(1sinx)(1+sinx)(1sinx)dx⇒2I=π∫^π_0\frac{(1-sinx)}{(1+sinx)(1-sinx)}dx

2I=π0π1sinxcos2xdx⇒2I=π∫^π_0 \frac{1-sinx}{cos^2x}dx

2I=π0πsec2xtanxsecxdx⇒2I=π∫^π_0{sec^2x-tanxsecx}dx

2I=π[tanxsecx]0π⇒2I=π[tanx-secx]^π_0

2I=π[2]⇒2I=π[2]

I=π⇒I=π