Question
Mathematics Question on integral
By using the properties of definite integrals, evaluate the integral: ∫2−π2πsin2xdx
Answer
Let ∫2−π2πsin2xdx
Assin2(−x)=(sin(−x))2=(−sinx)2=sin2xtherefore,sin2xisanevenfunction.
Itisknownthatiff(x)isanevenfunction,then∫−aaƒ(x)dx=2∫0aƒ(x)dx
I=2∫0π2sin2xdx
=2∫0π221−cos2xdx
=∫02π(1−cos2x)dx
=[x−2sin2x]02π
=2π