Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: π2π2sin2xdx∫^\frac{π}{2}_\frac{-π}{2}sin^2xdx

Answer

Let π2π2sin2xdx∫^\frac{π}{2}_\frac{-π}{2}sin^2xdx

Assin2(x)=(sin(x))2=(sinx)2=sin2xtherefore,sin2xisanevenfunction.As\, sin^2(−x)=(sin(−x))^2=(−sinx)^2=sin^2x\,therefore,\,sin^2x\,\, is\,\, an\,\, even\,\, function.

Itisknownthatiff(x)isanevenfunction,thenaaƒ(x)dx=20aƒ(x)dxIt\,\, is\,\, known\,\, that\,\, if\,\, f(x)\,is\,\, an\,\, even\, function,then\,\, ∫^a_{-a}ƒ(x)dx=2∫^a_0ƒ(x)dx

I=20π2sin2xdxI=2∫_0^{π}{2} sin^2xdx

=20π21cos2x2dx=2∫_0^{π}{2} \frac{1-cos2x}{2}dx

=0π2(1cos2x)dx=∫_0^\frac{π}{2}(1-cos2x)dx

=[xsin2x2]0π2=[x-\frac{sin2x}{2}]^\frac{π}{2}_0

=π2=\frac{π}{2}