Question
Mathematics Question on integral
By using the properties of definite integrals, evaluate the integral: ∫02π(2logsinx−logsin2x)dx
Answer
Let I=∫02π(2logsinx−logsin2x)dx
⇒I=∫02π2logsinx−log(2sinxcosx)dx
⇒I=∫02π2logsinx−logsinx−logcosx−log2dx
⇒I=∫π20logsinx−logcosx−log2dx...(1)
Itisknownthat,(∫0aƒ(x)dx=∫0aƒ(a−x)dx)
⇒I=∫2π0logcosx−logsinx−log2dx...(2)
Adding(1)and(2),weobtain
2I=∫π20(−log2−log2)dx
⇒2I=−2log2∫π201.dx
⇒I=−log2[2π]
⇒I=2π(−log2)
⇒I=2π[log21]
⇒I=2πlog21