Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0π2(2logsinxlogsin2x)dx∫^\frac{π}{2}_0(2logsinx-logsin2x)dx

Answer

Let I=0π2(2logsinxlogsin2x)dx∫^\frac{π}{2}_0(2logsinx-logsin2x)dx

I=0π22logsinxlog(2sinxcosx)dx⇒I=∫^\frac{π}{2}_0{{2log sinx-log(2sinx cosx)}}dx

I=0π22logsinxlogsinxlogcosxlog2dx⇒I=∫^\frac{π}{2}_0{2log sinx-logsinx-logcosx-log2}dx

I=π20logsinxlogcosxlog2dx...(1)⇒I=∫^{π}{2}_0{{logsinx-logcosx-log2}}dx...(1)

Itisknownthat,(0aƒ(x)dx=0aƒ(ax)dx)It is known that,(∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)

I=π20logcosxlogsinxlog2dx...(2)⇒I=∫\frac{π}{2}_0{logcosx-logsinx-log2}dx...(2)

Adding(1)and(2),weobtainAdding(1)and(2),we obtain

2I=π20(log2log2)dx2I=∫^{π}{2}_0(-log2-log2)dx

2I=2log2π201.dx⇒2I=-2log2∫^{π}{2}_01.dx

I=log2[π2]⇒I=-log2[\frac{π}{2}]

I=π2(log2)⇒I=\frac{π}{2}(-log2)

I=π2[log12]⇒I=\frac{π}{2}[log\frac{1}{2}]

I=π2log12⇒I=\frac{π}{2}log\frac{1}{2}