Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 02x2xdx∫^2_0 x\sqrt{2-x}dx

Answer

Let I=02x2xdx∫^2_0 x\sqrt{2-x}dx

I=02(2x)xdx..............(0aƒ(x)dx=0aƒ(ax)dx)I=∫^2_0(2-x)\sqrt{x}dx..............(∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)

=022x12x32dx=∫^2_0{2x^\frac{1}{2}-x^\frac{3}{2}}dx

=[2(x3232)x5252]02=[2(\frac{x^\frac{3}{2}}{\frac{3}{2}})\frac{-x^\frac{5}{2}}{\frac{5}{2}}]^2_0

[43x3225x52]02[\frac{4}{3}x^\frac{3}{2}-\frac{2}{5}x^\frac{5}{2}]^2_0

=43(2)3225(2)52=\frac{4}{3}(2)^\frac{3}{2}-\frac{2}{5}(2)^\frac{5}{2}

=22325×42=\frac{2√2}{3}-\frac{2}{5}×4√2

=823825=\frac{8√2}{3}-\frac{8√2}{5}

=40224215=\frac{40√2-24√2}{15}

=16215=\frac{16√2}{15}