Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 28x5dx\int_{2}^{8} |x-5| \,dx

Answer

Let II =28x5dx\int_{2}^{8} |x-5| \,dx

It can be seen that (x−5)≤0 on [2,5] and (x−5)≥0 on [5,8].

II =28(x5)dx\int_{2}^{8} -(x-5) \,dx+28(x5)dx\int_{2}^{8} (x-5) \,dx (abf(x)dx\bigg(\int_{a}^{b} f(x) \,dx =acf(x)\int_{a}^{c} f(x)+cbf(x))\int_{c}^{b} f(x)\bigg)

=[x225x]25+[x225x]58-\bigg[\frac{x^2}{2}-5x\bigg]^5_2+\bigg[\frac{x^2}{2}-5x\bigg]^8_5

=-[252\bigg[\frac {25}{2}-25-2+10]\bigg]+[\bigg[32-40-252\frac {25}{2}+25]\bigg]

=9