Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0π2sinxsinx+cosxdx∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx

Answer

0π2sinxsinx+cosxdx∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx

Let I=0π2sinxsinx+cosxdx∫_0^\frac{π}{2}\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx…..(1)

⇒I=∫_0^\frac{π}{2}$$\frac{\sqrt{sin(\frac{π}{2-x}})}{\sqrt{sin(\frac{π}{2-x}})+\sqrt{cos(\frac{π}{2-x}})}dx 0a∫_0^a ƒ(x)dx=0a∫_0^aƒ(a-x)}dx)

⇒I=0π2cosxcos+sinxdx∫_0^\frac{π}{2}\frac{\sqrt{cosx}}{\sqrt{cos}+\sqrt{sinx}}dx.....(2)

Addind(1)and(2),we obtain

2I=0π2sinx+cosxsinx+cosxdx∫_0^{π}{2}\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx

⇒2I=0π21.dx∫_0^{π}{2}1.dx

2I=[x]0π2⇒2I=[x]_0^\frac{π}{2}

2I=π2⇒2I=\frac{π}{2}

I=π4⇒I=\frac{π}{4}