Question
Mathematics Question on integral
By using the properties of definite integrals, evaluate the integral: ∫04πlog(1+tanx)dx
Answer
Let I =∫04πlog(1+tanx)dx ...(1)
∴I= ∫04πlog[1+tan(4π−x)]dx [∫0af(x)dx=∫0aƒ(a−x)dx]
⇒I = ∫04πlog[1+1+tan4π.tan xtan4π−tan x]dx
⇒I = ∫04πlog[1+1+tan x1−tan x]dx
⇒I = ∫04πlog[1+tan x2]dx
⇒I = ∫04πlog 2 dx−∫04πlog (1+tan x)]dx
⇒I = ∫04πlog 2 dx−I [From(1)]
⇒2I = [x.log 2]04π
⇒2I = 4πlog 2
⇒I = 8πlog 2