Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0π2cos2x dx∫_0^{\frac \pi2}cos^2x\ dx

Answer

I=$$∫_0^{\frac \pi2}cos^2x\ dx ...(1)

II =0π2cos2(π2x) dx∫_0^{\frac \pi2}cos^2(\frac \pi2-x)\ dx (0aƒ(x)dx=ƒ(ax)dx)(∫_0^aƒ(x)dx = ƒ(a-x)dx)

II = 0π2sin2x dx∫_0^{\frac \pi2}sin^2x\ dx ...(2)

Adding (1) and (2), we obtain

2I2I =0π2(sin2x+cos2x) dx∫_0^{\frac \pi2}(sin ^2x+cos^2x)\ dx

2I2I = 0π21 dx∫_0^{\frac \pi2}1\ dx

2I2I = [x]0π2[x]_0^{\frac \pi2}

2I2I = π2\frac \pi2

II = π4\frac \pi4