Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0π2cos5xdxsin5x+cos5x∫^{\frac{π}{2}}_0\frac{cos^5xdx}{sin^5x+cos^5x}

Answer

The correct answer is:I=π4I=\frac{π}{4}
Let I=0π2cos5xdxsin5x+cos5x......(1)I=∫^{\frac{π}{2}}_0\frac{cos^5xdx}{sin^5x+cos^5x}......(1)
I=0π2cos5(π2x)sin5(π2x)+cos5(π2x)dx(0aƒ(x)dx=0aƒ(ax)dx)⇒I=∫^{\frac{π}{2}}_0\frac{cos^5(\frac{π}{2}-x)}{sin^5(\frac{π}{2}-x)+cos^5(\frac{π}{2}-x)}dx\,\,\,\, (∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)
I=0π2sin5xsin5x+cos5xdx...(2)⇒I=∫^{\frac{π}{2}}_0\frac{sin^5x}{sin^5x+cos^5x}dx...(2)
Adding(1)and(2),we obtain
2I=0π2sin5x+cos5xsin5x+cos5xdx2I=∫^{\frac{π}{2}}_0\frac{sin^5x+cos^5x}{sin^5x+cos^5x}dx
2I=0π21.dx⇒2I=∫^{\frac{π}{2}}_01.dx
2I=[x]0π2⇒2I=[x]^{\frac{π}{2}}_0
2I=π2⇒2I=\frac{π}{2}
I=π4⇒I=\frac{π}{4}