Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0π2sin32xdxsin32x+cos32x\int^{\frac{π}{2}}_0 \frac{sin^{\frac{3}{2}}xdx}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}

Answer

The Correct Answer is:I=π4I = \frac{\pi}{4}
Let I=0π2sin32xdxsin32x+cos32x...(1)I = \int^{\frac{π}{2}}_0 \frac{sin^{\frac{3}{2}}xdx}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x} ...(1)
I=0π2sin32(π2x)sin32(π2x)+cos32(π2x)dx(0af(x)dx=0af(ax)dx)I = \int^{\frac{π}{2}}_0 \frac{sin^{\frac{3}{2}}(\frac{\pi}{2} - x)}{sin^{\frac{3}{2}}(\frac{\pi}{2} - x)+cos^{\frac{3}{2}}(\frac{\pi}{2} - x)} dx \,\,\,\,\,\,\, (\int^a_0 f(x)dx= \int^a_0 f(a-x)dx)
I=0π2cos32xsin32x+cos32xdx...(2)I = \int^{\frac{π}{2}}_0 \frac{cos^{\frac{3}{2}}x}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}dx...(2)
Adding(1)and(2),we obtain
2I=0π2sin32x+cos32xsin32x+cos32xdx2I = \int^{\frac{π}{2}}_0 \frac{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}dx
2I=0π21.dx2I = \int^{\frac{π}{2}}_0 1.dx
2I=[x]0π22I = [x]^\frac{\pi}{2}_0
2I=π22I = \frac{\pi}{2}
I=π4I = \frac{\pi}{4}