Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 0πlog(1+cosx)dx∫_0^π log(1+cosx)dx

Answer

Let I=0πlog(1+cosx)dx....(1)∫_0^π log(1+cosx)dx....(1)

I=0πlog(1+cos(πx))dx.........(0aƒ(x)dx=0aƒ(ax)dx)⇒I=∫_0^π log(1+cos(π-x))dx ......... (∫_0^aƒ(x)dx=∫_0^aƒ(a-x)dx)

I=0πlog(1+cosx)dx....(2)I=∫_0^π log(1+cosx)dx....(2)

Adding(1)and(2),weobtainAdding(1)and(2),we obtain

2I=0πlog(1+cosx)+log(1cosx)dx2I=∫_0^π {log(1+cosx)+log(1-cosx)}dx

2I=0πlog(1cos2x)dx⇒2I=∫_0^π log(1-cos^2x)dx

2I=0πlogsin2xdx⇒2I=∫_0^π logsin^2xdx

2I=20πlogsinxdx⇒2I=2∫_0^π logsinxdx

I=0πlogsinxdx...(3)⇒I=∫_0^π logsinxdx...(3)

sin(πx)=sinxsin(π-x)=sinx

I=20π2logsinxdx...(4)∴I=2∫_0^\frac{π}{2}logsinxdx...(4)

I=20π2logsin(π2x)dx=20π2logcosxdx...(5)⇒I=2∫_0^\frac{π}{2} logsin(\frac{π}{2}-x)dx=2∫_0\frac{π}{2}logcosxdx...(5)

Adding(4)and(5),weobtainAdding(4)and(5),we obtain

2I=20π2(logsinx+logcosx)dx2I=2∫_0^\frac{π}{2}(logsinx+logcosx)dx

I=0π2(logsinx+logcosx+log2log2)dx⇒I=∫_0^\frac{π}{2}(logsinx+logcosx+log2-log2)dx

I=0π2(log2sinxcosxlog2)dx⇒I=∫_0^\frac{π}{2}(log2sinxcosx-log2)dx

I=0π2logsin2xdx0π2log2dx⇒I=∫_0^\frac{π}{2}logsin2xdx-∫_0\frac{π}{2}log2dx

Let2x=t2dx=dtLet 2x=t 2dx=dt

Whenx=0,t=0andwhenx=π2,π=When x=0,t=0 and when x=\frac{π}{2},π=

I=1π20π0logsintdt2log2∴I=\frac{1π}{2}∫_0^π0logsintdt-\frac{}{2}log2

I=1πI22log2⇒I=\frac{1πI}{2}-\frac{}{2}log2

I2=π2log2⇒\frac{I}{2}=-\frac{π}{2}log2

I=πlog2⇒I=-πlog2