Question
Mathematics Question on integral
By using the properties of definite integrals, evaluate the integral: ∫0πlog(1+cosx)dx
Answer
Let I=∫0πlog(1+cosx)dx....(1)
⇒I=∫0πlog(1+cos(π−x))dx.........(∫0aƒ(x)dx=∫0aƒ(a−x)dx)
I=∫0πlog(1+cosx)dx....(2)
Adding(1)and(2),weobtain
2I=∫0πlog(1+cosx)+log(1−cosx)dx
⇒2I=∫0πlog(1−cos2x)dx
⇒2I=∫0πlogsin2xdx
⇒2I=2∫0πlogsinxdx
⇒I=∫0πlogsinxdx...(3)
sin(π−x)=sinx
∴I=2∫02πlogsinxdx...(4)
⇒I=2∫02πlogsin(2π−x)dx=2∫02πlogcosxdx...(5)
Adding(4)and(5),weobtain
2I=2∫02π(logsinx+logcosx)dx
⇒I=∫02π(logsinx+logcosx+log2−log2)dx
⇒I=∫02π(log2sinxcosx−log2)dx
⇒I=∫02πlogsin2xdx−∫02πlog2dx
Let2x=t2dx=dt
Whenx=0,t=0andwhenx=2π,π=
∴I=21π∫0π0logsintdt−2log2
⇒I=21πI−2log2
⇒2I=−2πlog2
⇒I=−πlog2