Solveeit Logo

Question

Mathematics Question on integral

By using the properties of definite integrals, evaluate the integral: 04x1dx\int_{0}^{4}|x-1|dx

Answer

I=04x1dx\int_{0}^{4}|x-1|dx

It can be seen that,(x−1)≤0 when 0≤x≤1and(x−1)≥0 when1≤x≤4

I=01x1dx\int_{0}^{1}|x-1|dx+14x1dx\int_{1}^{4}|x-1|dx  abf(x)=0af(x)+bcf(x)\,\,\,\,\,\ \because\int_{a}^{b}f(x)=\int_{0}^{a}f(x)+\int_{b}^{c}f(x)

=01(x1)dx+04(x1)dx\int_{0}^{1}-(x-1)dx+\int_{0}^{4}(x-1)dx

=1(12)+(42)24(12)+1=1- (\frac{1}{2}) +\frac{(4^2)} {2} -4- (\frac{1}{2}) +1

=5