Question
Mathematics Question on Determinants
By using properties of determinants,show that:Ix y\zx2y2z2yzzxxy=(x-y)(y-z)(z-x)(xy+yz+zx)
Answer
Let △=x y\zx2y2z2yzzxxy
Applying R2 → R2 − R1 and R3 → R3 − R1, we have:
△=x y−x\z−xx2y2−x3z2−x2yzzx−yzxy−yz
=x−(x−y)\z−xx2−(x−y)(x+y)z2−x2yzzx−yz−y(z−x)
=(x-y)(z-x)x −1\1x2−x−yz+xyzz−y
Applying R3 → R3 + R2, we have:
△=(x-y)(z-x)x −1\0x2−x−yz−yyzzz−y
=(x-y)(z-x)(z-y)x −1\0x2−x−y1yzz1
Expanding along R3, we have:
△=[(x-y)(z-x)(z-y)]\bigg[(-1)$$\begin{vmatrix} x &yz \\\ -1 & z \end{vmatrix}+1x −1x2−x−y ]
=[(x-y)(z-x)(z-y)][(-xz-yz)+(-x2-xy+x2)]
=(x-y)(y-z)(z-x)(xy+yz+zx)
Hence, the given result is proved.