Question
Mathematics Question on Determinants
By using properties of determinants,show that:\begin{bmatrix}1+a^2-b^2& 2ab& -2b\\\ 2ab& 1-a^2+b^2& 2a\\\ 2b& -2a& 1-a^2-b^2\end{bmatrix}$$=(1+a^2+b^2)^3
Answer
△=1+a2−b2 2ab 2b2ab1−a2+b2−2a−2b2a1−a2−b2
Applying R1→R1+bR3 and R2→R2−aR3, we have:
△=1+a2+b2 0 2b01+a2+b2−2a−b(1+a2+b2)a(1+a2+b2)1−a2−b2
=(1+a2+b2)21 0 2b01−2a−ba1−a2−b2
Expanding along R1, we have:
△=(1+a2+b2)2[(1)1−2aa1−a2−b2−b[0 2b1−2a]]
=(1+a2+b2)2[1−a2−b2+2a2−b(−2b)]
=(1+a2+b2)2(1+a2+b2)
=(1+a2+b2)3