Solveeit Logo

Question

Mathematics Question on Determinants

By using properties of determinants, show that:(i)\begin{bmatrix}1&a&a^2\\\ 1&b&b^2\\\ 1&c&c^2\end{bmatrix}=(a-b)(b-c)(c-a)$$(ii)\begin{bmatrix}1&1&1\\\ a&b&c\\\ a^3&b^3&c^3\end{bmatrix}=(a-b)(b-c)(c-a)(a+b+c)

Answer

(i) Let=[1aa2 1bb2 1cc2]\triangle=\begin{bmatrix}1&a&a^2\\\ 1&b&b^2\\\ 1&c&c^2\end{bmatrix}
Applying R1R1R3R_1 → R_1 − R_3 and R2R2R3R_2 → R_2 − R_3, we have:
=[0aca2c2 0bcb2c2 1cc2]△=\begin{bmatrix}0& a-c& a^2-c^2\\\ 0& b-c& b^2-c^2\\\ 1&c&c^2\end{bmatrix}
=(ca)(bc)[01ac 01b+c 1cc2]=(c-a)(b-c)\begin{bmatrix}0& -1& -a-c\\\ 0& 1& b+c\\\ 1&c&c^2\end{bmatrix}
Applying R1R1+R2R_1 → R_1 + R_2, we have:
=(bc)(ca)[00a+b 01b+c 1cc2]△=(b-c)(c-a)\begin{bmatrix}0&0&-a+b\\\ 0&1&b+c\\\ 1&c&c^2\end{bmatrix}
=(ab)(bc)(ca)[001 01b+c 1cc2]=(a-b)(b-c)(c-a)\begin{bmatrix}0&0&-1\\\ 0&1&b+c\\\ 1&c&c^2\end{bmatrix}
Expanding along C1C_1, we have:
=(ab)(bc)(ca)[01\1b+c]=(ab)(bc)(ca)△=(a-b)(b-c)(c-a)\begin{bmatrix}0&1\\\1&b+c\end{bmatrix}=(a-b)(b-c)(c-a)
Hence, the given result is proved.
(ii)Let=[111 abc a3b3c3]Let \triangle=\begin{bmatrix}1&1&1\\\ a&b&c\\\ a^3&b^3&c^3\end{bmatrix}
Applying C1C1C3C_1 → C_1 − C_3 and C2C2C3C_2 → C_2 − C_3, we have:
=[001 acbcc a3c3b3c3c3]△=\begin{bmatrix}0&0&1\\\ a-c& b-c& c\\\ a^3-c^3& b^3-c^3& c^3\end{bmatrix}
=[001 acbcc (ac)(a2+ac+c2)(bc)(b2+bc+c2)c3]=\begin{bmatrix}0&0&1\\\ a-c& b-c& c\\\ (a-c)(a^2+ac+c^2)& (b-c)(b^2+bc+c^2)& c^3\end{bmatrix}
=(ca)(bc)[001 11c (a2+ac+c2)(b2+bc+c2)c3]=(c-a)(b-c)\begin{bmatrix}0&0&1\\\ -1&1&c\\\ -(a^2+ac+c^2)& (b^2+bc+c^2)& c^3\end{bmatrix}
Applying C1C1+C2C_1 → C_1 + C_2, we have:
=(ca)(bc)[001 01c (b2a2+(bcac)(b2+bc+c2)c3]△=(c-a)(b-c)\begin{bmatrix}0&0&1\\\ 0&1&c\\\ (b^2-a^2+(bc-ac)& (b^2+bc+c^2)& c^3\end{bmatrix}
=(ab)(ca)(bc)[001 01c (b2a2+(bcac)(b2+bc+c2)c3]△=(a-b)(c-a)(b-c)\begin{bmatrix}0&0&1\\\ 0&1&c\\\ (b^2-a^2+(bc-ac)& (b^2+bc+c^2)& c^3\end{bmatrix}
Expanding along C1C_1, we have:
=(ab)(ca)(bc)(a+b+c)(1)[01\1c]△=(a-b)(c-a)(b-c)(a+b+c)(-1)\begin{bmatrix}0&1\\\1&c\end{bmatrix}
=(ab)(bc)(ca)(a+b+c)=(a-b)(b-c)(c-a)(a+b+c)
Hence, the given result is proved.