Question
Mathematics Question on Determinants
By using properties of determinants, show that:(i)\begin{bmatrix}1&a&a^2\\\ 1&b&b^2\\\ 1&c&c^2\end{bmatrix}=(a-b)(b-c)(c-a)$$(ii)\begin{bmatrix}1&1&1\\\ a&b&c\\\ a^3&b^3&c^3\end{bmatrix}=(a-b)(b-c)(c-a)(a+b+c)
(i) Let△=1 1 1abca2b2c2
Applying R1→R1−R3 and R2→R2−R3, we have:
△=0 0 1a−cb−cca2−c2b2−c2c2
=(c−a)(b−c)0 0 1−11c−a−cb+cc2
Applying R1→R1+R2, we have:
△=(b−c)(c−a)0 0 101c−a+bb+cc2
=(a−b)(b−c)(c−a)0 0 101c−1b+cc2
Expanding along C1, we have:
△=(a−b)(b−c)(c−a)[0\11b+c]=(a−b)(b−c)(c−a)
Hence, the given result is proved.
(ii)Let△=1 a a31bb31cc3
Applying C1→C1−C3 and C2→C2−C3, we have:
△=0 a−c a3−c30b−cb3−c31cc3
=0 a−c (a−c)(a2+ac+c2)0b−c(b−c)(b2+bc+c2)1cc3
=(c−a)(b−c)0 −1 −(a2+ac+c2)01(b2+bc+c2)1cc3
Applying C1→C1+C2, we have:
△=(c−a)(b−c)0 0 (b2−a2+(bc−ac)01(b2+bc+c2)1cc3
△=(a−b)(c−a)(b−c)0 0 (b2−a2+(bc−ac)01(b2+bc+c2)1cc3
Expanding along C1, we have:
△=(a−b)(c−a)(b−c)(a+b+c)(−1)[0\11c]
=(a−b)(b−c)(c−a)(a+b+c)
Hence, the given result is proved.