Question
Mathematics Question on Determinants
By using properties of determinants,show that:
(i)a−b−c 2b 2c2ab−c−a2c2a2bc−a−b=(a+b+c)3
(ii)x+y+2z z zxy+z+2xxyyz+x+2y=2(x+y+z)3
(i) △=a−b−c 2b 2c2ab−c−a2c2a2bc−a−b
Applying R1 → R1 + R2 + R3, we have:
△=Ia+b+c 2b 2ca+b+cb−c−a2ca+b+c2bc−a−b
=(a+b+c)1 2b 2c1b−c−a2c12bc−a−b
Applying C2 → C2 − C1, C3 → C3 − C1, we have:
△=(a+b+c)1 2b 2c0−a+b+c000−(a+b+c)
=(a+b+c)31 2b 2c0−1000−1
Expanding along C3, we have:
△=(a+b+c)3(-1)(-1)=(a+b+c)3
Hence, the given result is proved.
(ii) △=x+y+2z z zxy+z+2xxyyz+x+2y
Applying C1 → C1 + C2 + C3, we have:
△=2(x+y+z) 2(x+y+z) 2(x+y+z)xy+z+2xxyyz+x+2y
=2(x+y+z)1 1 1xy+z+2xxyyz+x+2y
Applying R2 → R2 − R1 and R3 → R3 − R1, we have:
△=2(x+y+z)1 0 0xx+y+z0yyx+y+z
△=2(x+y+z)31 0 0x10y01
Expanding along R3, we have:
△=2(x+y+z)3(1)(1-0)=2(x+y+z)3
Hence, the given result is proved.