Question
Mathematics Question on Determinants
By using properties of determinants, show that:
(i)x+4 2x\2x2xx+42x2x2xx+4=(5x+4)(4-x)2
(II)y+k y\yyy+kyyyy+k=k2(3y+k)
(i)△=x+4 2x\2x2xx+42x2x2xx+4
Applying R1 → R1 + R2 + R3, we have:
△=5x+4 2x\2x5x+4x+42x5x+42xx+4
=(5x+4)1 2x\2x1x+42x12xx+4
Applying C2 → C2 − C1, C3 → C3 − C1, we have:
△=(5x+4)I1 2x\2x0−x+4000−x+4
=(5x+4)(4-x)(4-x)1 2x\2x010001
Expanding along C3, we have:
△=(5x+4)(4-x)21 2x01
=(5x+4)(4-x)2
(ii)△=y+k y\yyy+kyyyy+k
Applying R1 → R1 + R2 + R3, we have:
△=3y+k y\y3y+ky+ky3y+kyy+k
=(3y+k)1 y\y1y+ky1yy+k
Applying C2 → C2 − C1 and C3 → C3 − C1, we have:
△=(3y+k)I1 y\y0k000k
=k2(3y+k)I1 y\y010001
Expanding along C3, we have:
△=k2(3y+k)1 y01=k2(3y+k)
Hence, the given result is proved.