Solveeit Logo

Question

Mathematics Question on Determinants

By using properties of determinants, show that:
(i)x+42x2x 2xx+42x\2x2xx+4\begin{vmatrix} x+4 & 2x & 2x\\\ 2x & x+4 & 2x \\\2x &2x&x+4\end{vmatrix}=(5x+4)(4-x)2
(II)y+kyy yy+ky\yyy+k\begin{vmatrix} y+k & y & y\\\ y & y+k & y \\\y &y&y+k\end{vmatrix}=k2(3y+k)

Answer

(i)△=x+42x2x 2xx+42x\2x2xx+4\begin{vmatrix} x+4 & 2x & 2x\\\ 2x & x+4 & 2x \\\2x &2x&x+4\end{vmatrix}

Applying R1 → R1 + R2 + R3, we have:

△=5x+45x+45x+4 2xx+42x\2x2xx+4\begin{vmatrix} 5x+4 & 5x+4 & 5x+4\\\ 2x & x+4 & 2x \\\2x &2x&x+4\end{vmatrix}

=(5x+4)111 2xx+42x\2x2xx+4\begin{vmatrix} 1 & 1 & 1\\\ 2x & x+4 & 2x \\\2x &2x&x+4\end{vmatrix}

Applying C2 → C2 − C1, C3 → C3 − C1, we have:

△=(5x+4)I100 2xx+40\2x0x+4\begin{vmatrix} 1 & 0 & 0\\\ 2x & -x+4 & 0 \\\2x &0&-x+4\end{vmatrix}

=(5x+4)(4-x)(4-x)100 2x10\2x01\begin{vmatrix} 1 & 0 & 0\\\ 2x & 1 & 0 \\\2x &0&1\end{vmatrix}

Expanding along C3, we have:
△=(5x+4)(4-x)210 2x1\begin{vmatrix} 1 & 0 \\\ 2x & 1 \end{vmatrix}
=(5x+4)(4-x)2


(ii)△=y+kyy yy+ky\yyy+k\begin{vmatrix} y+k & y & y\\\ y & y+k & y \\\y &y&y+k\end{vmatrix}

Applying R1 → R1 + R2 + R3, we have:

△=3y+k3y+k3y+k yy+ky\yyy+k\begin{vmatrix} 3y+k & 3y+k & 3y+k\\\ y & y+k & y \\\y &y&y+k\end{vmatrix}

=(3y+k)111 yy+ky\yyy+k\begin{vmatrix}1 & 1 & 1\\\ y & y+k & y \\\y &y&y+k\end{vmatrix}

Applying C2 → C2 − C1 and C3 → C3 − C1, we have:

△=(3y+k)I100 yk0\y0k\begin{vmatrix}1 & 0 & 0\\\ y & k & 0 \\\y &0&k\end{vmatrix}

=k2(3y+k)I100 y10\y01\begin{vmatrix}1 & 0 & 0\\\ y & 1 & 0 \\\y &0&1\end{vmatrix}

Expanding along C3, we have:

△=k2(3y+k)10 y1\begin{vmatrix} 1 & 0 \\\ y & 1 \end{vmatrix}=k2(3y+k)

Hence, the given result is proved.