Solveeit Logo

Question

Mathematics Question on Determinants

By using properties of determinants, show that: 1xx2\x21x\xx21\begin{vmatrix}1&x&x^2\\\x^2&1&x\\\x&x^2&1\end{vmatrix}=(1-x3)2

Answer

△=1xx2\x21x\xx21\begin{vmatrix}1&x&x^2\\\x^2&1&x\\\x&x^2&1\end{vmatrix}

Applying R1 → R1 + R2 + R3, we have:

△=1+x+x21+x+x21+x+x2\x21x\xx21\begin{vmatrix}1+x+x^2&1+x+x^2&1+x+x^2\\\x^2&1&x\\\x&x^2&1\end{vmatrix}

=(1+x+x2)111\x21x\xx21\begin{vmatrix}1&1&1\\\x^2&1&x\\\x&x^2&1\end{vmatrix}

Applying C2 → C2 − C1 and C3 → C3 − C1, we have:

△=(1+x+x2)100\x21x2xx2xx2x1x\begin{vmatrix}1&0&0\\\x^2&1-x^2&x-x^2\\\\-x&x^2-x&1-x\end{vmatrix}

=(1+x+x2)(1-x)(1-x)I100 x2 1+x x x -x 1I

=(1-x3)(1-x)I100 x2 1+x x x -x 1I

Expanding along R1, we have:

△=(1-x3)(1-x)(1)I1+x x -x 1I

=(1-x3)(1-x)(1+x+x2)

=(1-x3)(1-x3)

=(1-x3)2

Hence, the given result is proved.