Solveeit Logo

Question

Mathematics Question on Determinants

By using properties of determinants ,show that: 0aba0c\bc0\begin{vmatrix}0&a&-b\\\\-a&0&-c\\\b&c&0\end{vmatrix}=0

Answer

We have,
△= 0aba0c\bc0\begin{vmatrix}0&a&-b\\\\-a&0&-c\\\b&c&0\end{vmatrix}
Applying R1 \to cR1,we have

△=1c0acbca0c\bc0\frac{1}{c}\begin{vmatrix}0&ac&-bc\\\\-a&0&-c\\\b&c&0\end{vmatrix}
Applying R11\to R1-bR2,we have

△=1cabac0a0c\bc0\frac{1}{c}\begin{vmatrix}ab&ac&0\\\\-a&0&-c\\\b&c&0\end{vmatrix}

=1cbc0a0c\bc0\frac{1}{c}\begin{vmatrix}b&c&0\\\\-a&0&-c\\\b&c&0\end{vmatrix}

Here, the two rows R1 and R3 are identical.
∴∆ = 0.