Solveeit Logo

Question

Question: By using binomial theorem, expand \({\left( {1 + x + {x^2}} \right)^3}\)...

By using binomial theorem, expand (1+x+x2)3{\left( {1 + x + {x^2}} \right)^3}

Explanation

Solution

Hint – In this question let (x+x2)\left( {x + {x^2}} \right) be equal to some variable, so that the given expression
Given expression can be converted to the standard binomial expansion form (1+x)n{\left( {1 + x} \right)^n}, whose expansion according to Binomial theorem is given as, (1+x)n=nC0+nC1x+nC2x2+nC3x3+..............+nCnxn{\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}.

Complete step-by-step answer:
Given expression
(1+x+x2)3{\left( {1 + x + {x^2}} \right)^3}
Let
t=x+x2t = x + {x^2}
(1+x+x2)3=(1+t)3\Rightarrow {\left( {1 + x + {x^2}} \right)^3} = {\left( {1 + t} \right)^3}
Now as we know according to Binomial theorem the expansion of (1+x)n{\left( {1 + x} \right)^n} is
(1+x)n=nC0+nC1x+nC2x2+nC3x3+..............+nCnxn\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}
Now as we know that nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} so use this property in above equation we have,
nC0=n!0!(n0)!=1\Rightarrow {}^n{C_0} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} = 1, nC1=n!1!(n1)!=n{}^n{C_1} = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} = n, nC2=n!2!(n2)!=n(n1)2!{}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2!}} , nC3=n!3!(n3)!=n(n1)(n2)3!{}^n{C_3} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}} and so on......., so the above equation converts into,
(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+..............\Rightarrow {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ..............
Therefore the expansion of (1+t)3{\left( {1 + t} \right)^3}according to binomial theorem is
(1+t)3=1+3t+3(31)2!t2+3(31)(32)3!t3\Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + \dfrac{{3\left( {3 - 1} \right)}}{{2!}}{t^2} + \dfrac{{3\left( {3 - 1} \right)\left( {3 - 2} \right)}}{{3!}}{t^3}
Now simplify the above equation we have,
(1+t)3=1+3t+3(2)2×1t2+3(2)(1)3×2×1t3\Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + \dfrac{{3\left( 2 \right)}}{{2 \times 1}}{t^2} + \dfrac{{3\left( 2 \right)\left( 1 \right)}}{{3 \times 2 \times 1}}{t^3}
(1+t)3=1+3t+3t2+t3\Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + 3{t^2} + {t^3}
Now re substitute the value of (t) we have,
(1+x+x2)3=1+3(x+x2)+3(x+x2)2+(x+x2)3\Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3\left( {x + {x^2}} \right) + 3{\left( {x + {x^2}} \right)^2} + {\left( {x + {x^2}} \right)^3}
Now expand the square and cube according to property (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab and(a+b)3=a3+b3+3ab2+3a2b{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b so we have,
(1+x+x2)3=1+3(x+x2)+3(x2+x4+2x3)+(x3+x6+3x5+3x4)\Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3\left( {x + {x^2}} \right) + 3\left( {{x^2} + {x^4} + 2{x^3}} \right) + \left( {{x^3} + {x^6} + 3{x^5} + 3{x^4}} \right)
Now simplify the above equation we have,
(1+x+x2)3=1+3x+3x2+3x2+3x4+6x3+(x3+x6+3x5+3x4)\Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3x + 3{x^2} + 3{x^2} + 3{x^4} + 6{x^3} + \left( {{x^3} + {x^6} + 3{x^5} + 3{x^4}} \right)
(1+x+x2)3=1+3x+6x2+7x3+6x4+3x5+x6\Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3x + 6{x^2} + 7{x^3} + 6{x^4} + 3{x^5} + {x^6}
So this is the required expansion of a given expression using the Binomial theorem.
So this is the required answer.

Note – Binomial theorem specifies the expansion of any power (a+b)m{\left( {a + b} \right)^m} of a binomial (a+b)\left( {a + b} \right) as a sum of products aibj{a^i}{b^j}, such as (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab. Important point here is that every algebraic standard identity is derived from the same concept as being explained.