Solveeit Logo

Question

Question: By trapezoidal rule the value of the integral \(\int_{1}^{5}{x^{2}dx}\) on dividing the interval int...

By trapezoidal rule the value of the integral 15x2dx\int_{1}^{5}{x^{2}dx} on dividing the interval into four equal parts is

A

42

B

41.3

C

41

D

40

Answer

42

Explanation

Solution

h=514=1h = \frac{5 - 1}{4} = 1

x :12345
y :1491625

15x2dx=h2[(y0+y4)+2(y1+y2+y3)]=12[(1+25)+2(4+9+16)]=12[26+58]=842=42\int_{1}^{5}{x^{2}dx} = \frac{h}{2}\left\lbrack (y_{0} + y_{4}) + 2(y_{1} + y_{2} + y_{3}) \right\rbrack = \frac{1}{2}\left\lbrack (1 + 25) + 2(4 + 9 + 16) \right\rbrack = \frac{1}{2}\lbrack 26 + 58\rbrack = \frac{84}{2} = 42