Solveeit Logo

Question

Question: By the definition of the definite integral, the value of \(\displaystyle \lim_{n \to \infty }\left( ...

By the definition of the definite integral, the value of limn(1415+n5+2425+n5+3435+n5+......+n4n5+n5)\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right) is
(a) log 2
(b) 15log2\dfrac{1}{5}\log 2
(c) 14log2\dfrac{1}{4}\log 2
(d) 13log2\dfrac{1}{3}\log 2

Explanation

Solution

Divide all the numerators and denominators of different terms by n5{{n}^{5}} . In the numerator write the expressions as 1n(14n4),1n(24n4),1n(34n4)\dfrac{1}{n}\left( \dfrac{{{1}^{4}}}{{{n}^{4}}} \right),\dfrac{1}{n}\left( \dfrac{{{2}^{4}}}{{{n}^{4}}} \right),\dfrac{1}{n}\left( \dfrac{{{3}^{4}}}{{{n}^{4}}} \right) and so on. Now, write the expression using sigma sign Σ\Sigma as 1nf(rn)\dfrac{1}{n}f\left( \dfrac{r}{n} \right) , where r ranges from 1 to n. Now, convert the expression into a definite integral by replacing rn\dfrac{r}{n} with x and 1n\dfrac{1}{n} with dx. Determine the limits of the integral by substituting r = 0 and r = n for nn \to \infty in the ratio rn\dfrac{r}{n}. Solve the integral to get the answer.

Complete step-by-step solution:
Here, we have been asked to find the value of the expression limn(1415+n5+2425+n5+3435+n5+......+n4n5+n5)\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right). So, let us assume its value to be II. so, we have
I=limn(1415+n5+2425+n5+3435+n5+......+n4n5+n5)\Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right)
Dividing the numerators and denominators of all the terms with n5{{n}^{5}}, we get,
I=limn((14n5)15n5+1+(24n5)25n5+1+(34n5)35n5+1+......+(n4n5)n5n5+1)\Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{\left( \dfrac{{{1}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{1}^{5}}}{{{n}^{5}}}+1}+\dfrac{\left( \dfrac{{{2}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{2}^{5}}}{{{n}^{5}}}+1}+\dfrac{\left( \dfrac{{{3}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{3}^{5}}}{{{n}^{5}}}+1}+......+\dfrac{\left( \dfrac{{{n}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{n}^{5}}}{{{n}^{5}}}+1} \right)
The above expression can be written as

& \Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{\dfrac{1}{n}{{\left( \dfrac{1}{n} \right)}^{4}}}{{{\left( \dfrac{1}{n} \right)}^{5}}+1}+\dfrac{\dfrac{1}{n}{{\left( \dfrac{2}{n} \right)}^{4}}}{{{\left( \dfrac{2}{n} \right)}^{5}}+1}+\dfrac{\dfrac{1}{n}{{\left( \dfrac{3}{n} \right)}^{4}}}{{{\left( \dfrac{3}{n} \right)}^{5}}+1}+......+\dfrac{\dfrac{1}{n}{{\left( \dfrac{n}{n} \right)}^{4}}}{{{\left( \dfrac{n}{n} \right)}^{5}}+1} \right) \\\ & \Rightarrow I=\displaystyle \lim_{n \to \infty }\left[ \dfrac{1}{n}\left( \dfrac{{{\left( \dfrac{1}{n} \right)}^{4}}}{{{\left( \dfrac{1}{n} \right)}^{5}}+1}+\dfrac{{{\left( \dfrac{2}{n} \right)}^{4}}}{{{\left( \dfrac{2}{n} \right)}^{5}}+1}+\dfrac{{{\left( \dfrac{3}{n} \right)}^{4}}}{{{\left( \dfrac{3}{n} \right)}^{5}}+1}+......+\dfrac{{{\left( \dfrac{n}{n} \right)}^{4}}}{{{\left( \dfrac{n}{n} \right)}^{5}}+1} \right) \right] \\\ \end{aligned}$$ Using the summation notation $\Sigma $, we can write, $$\Rightarrow I=\displaystyle \lim_{n \to \infty }\sum\limits_{r=1}^{n}{\dfrac{1}{n}\times \left[ \dfrac{{{\left( \dfrac{r}{n} \right)}^{4}}}{{{\left( \dfrac{r}{n} \right)}^{5}}+1} \right]}$$ The R.H.S of the above expression is of the form $\dfrac{1}{n}f\left( \dfrac{r}{n} \right)$, where $f\left( \dfrac{r}{n} \right)$ is a function of $\left( \dfrac{r}{n} \right)$. To convert this expression into fractional form, we replace $\left( \dfrac{r}{n} \right)$ with x and with $\dfrac{1}{n}$ dx. So, we have $\Rightarrow I=\int\limits_{a}^{b}{\left( \dfrac{{{x}^{4}}}{{{x}^{5}}+1} \right)}dx$ Here, a and b are the lower and upper limits of the integral. Let us determine the values of a and b. Since n is tending to infinity, so we have (i) At r = 0, $\begin{aligned} & \Rightarrow \displaystyle \lim_{n \to \infty }\dfrac{r}{n}=\dfrac{0}{\infty }=0 \\\ & \Rightarrow a=0 \\\ \end{aligned}$ (ii) At r = n, $\begin{aligned} & \Rightarrow \displaystyle \lim_{n \to \infty }\dfrac{r}{n}=\displaystyle \lim_{n \to \infty }\dfrac{n}{n}=1 \\\ & \Rightarrow b=1 \\\ \end{aligned}$ So the expression for I becomes, $\Rightarrow I=\int\limits_{0}^{1}{\left( \dfrac{{{x}^{4}}}{{{x}^{5}}+1} \right)}dx$ Let us assume ${{x}^{5}}+1=k$ . Therefore, on differentiating both sides, we get $\begin{aligned} & \Rightarrow 5{{x}^{4}}dx=dk \\\ & \Rightarrow {{x}^{4}}dx=\dfrac{dk}{5} \\\ \end{aligned}$ Substituting the above relation in I, we get $\begin{aligned} & \Rightarrow I=\int\limits_{0}^{1}{\dfrac{dk}{5k}} \\\ & \Rightarrow I=\dfrac{1}{5}\int\limits_{0}^{1}{\dfrac{dk}{k}} \\\ \end{aligned}$ Now we know that $\int{\dfrac{dx}{x}=\ln x}$ , so we have $\Rightarrow I=\dfrac{1}{5}\left[ \ln k \right]_{0}^{1}$ Substituting the value of ‘k’ back, we get $\Rightarrow I=\dfrac{1}{5}\left[ \ln \left( {{x}^{5}}+1 \right) \right]_{0}^{1}$ Now, substituting the limits, we get $\begin{aligned} & \Rightarrow I=\dfrac{1}{5}\left[ \ln \left( {{1}^{5}}+1 \right)-\ln \left( {{0}^{5}}+1 \right) \right] \\\ & \Rightarrow I=\dfrac{1}{5}\left[ \ln 2-\ln 1 \right] \\\ & \because \ln 1=0 \\\ & \Rightarrow I=\dfrac{1}{5}\left[ \ln 2-0 \right] \\\ & \therefore I=\dfrac{1}{5}\ln 2 \\\ \end{aligned}$ **Hence, option (b) is the correct answer.** **Note:** One may note that when we have substituted ${{x}^{5}}+1=k$, we have not changed the limits of the integration. This is because at last, we have substituted back the value of k in terms of x. If we would not have substituted back the value of k then only the change of limits would have been mandatory. You must remember the process to change the limit into a definite integral otherwise you will not be able to solve this question.