Solveeit Logo

Question

Question: By Simpson's rule taking \(n = 4\), the value of the integral \(\int_{0}^{1}{\frac{1}{1 + x^{2}}dx}\...

By Simpson's rule taking n=4n = 4, the value of the integral 0111+x2dx\int_{0}^{1}{\frac{1}{1 + x^{2}}dx} is equal to

A

0.785

B

0.788

C

0.781

D

None of these

Answer

0.785

Explanation

Solution

h=104=0.25h = \frac{1 - 0}{4} = 0.25

x0=06mu6mu6mu6mux1=0+0.25=0.25x_{0} = 0\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu} x_{1} = 0 + 0.25 = 0.25

x2=0+2(0.25)=0.50,6mu6mu6mux3=0.75,6mu6mux4=1x_{2} = 0 + 2(0.25) = 0.50,\mspace{6mu}\mspace{6mu}\mspace{6mu} x_{3} = 0.75,\mspace{6mu}\mspace{6mu} x_{4} = 1and

y0=11+x02=11+0=1y_{0} = \frac{1}{1 + x_{0}^{2}} = \frac{1}{1 + 0} = 1,y1=11+(0.25)2=0.941y_{1} = \frac{1}{1 + (0.25)^{2}} = 0.941,

y2=11+(0.50)2=0.8y_{2} = \frac{1}{1 + (0.50)^{2}} = 0.8, y3=0.64y_{3} = 0.64 and y4=0.5y_{4} = 0.5

01dx1+x2=0.253[(y0+y4)+4(y1+y3)+2(y2)]\int_{0}^{1}{\frac{dx}{1 + x^{2}} = \frac{0.25}{3}\left\lbrack (y_{0} + y_{4}) + 4(y_{1} + y_{3}) + 2(y_{2}) \right\rbrack}

=0.253[(1+0.5)+4(0.941+0.64)+2(0.8)]=0.785= \frac{0.25}{3}\left\lbrack (1 + 0.5) + 4(0.941 + 0.64) + 2(0.8) \right\rbrack = 0.785