Solveeit Logo

Question

Question: q) $y = \sqrt{\log_2 3 \cdot \log_2 12 + \log_2 48 \log_2 192 + 16 - \log_2 \frac{1}{2} \log_2 48}$...

q) y=log23log212+log248log2192+16log212log248y = \sqrt{\log_2 3 \cdot \log_2 12 + \log_2 48 \log_2 192 + 16 - \log_2 \frac{1}{2} \log_2 48}

Answer

2(log23)2+13log23+44\sqrt{2(\log_2 3)^2 + 13\log_2 3 + 44}

Explanation

Solution

To simplify the given expression for yy, we will first express all logarithms in terms of a common base and a common variable. Let a=log23a = \log_2 3.

The terms inside the square root involve logarithms of 3, 12, 48, 192, and 12\frac{1}{2}. Let's express each of these in terms of aa:

  1. log23=a\log_2 3 = a
  2. log212=log2(34)=log2(322)=log23+log222=a+2\log_2 12 = \log_2 (3 \cdot 4) = \log_2 (3 \cdot 2^2) = \log_2 3 + \log_2 2^2 = a + 2
  3. log248=log2(316)=log2(324)=log23+log224=a+4\log_2 48 = \log_2 (3 \cdot 16) = \log_2 (3 \cdot 2^4) = \log_2 3 + \log_2 2^4 = a + 4
  4. log2192=log2(364)=log2(326)=log23+log226=a+6\log_2 192 = \log_2 (3 \cdot 64) = \log_2 (3 \cdot 2^6) = \log_2 3 + \log_2 2^6 = a + 6
  5. log212=log221=1\log_2 \frac{1}{2} = \log_2 2^{-1} = -1

Now, substitute these expressions back into the equation for yy: y=log23log212+log248log2192+16log212log248y = \sqrt{\log_2 3 \cdot \log_2 12 + \log_2 48 \log_2 192 + 16 - \log_2 \frac{1}{2} \log_2 48} y=a(a+2)+(a+4)(a+6)+16(1)(a+4)y = \sqrt{a(a+2) + (a+4)(a+6) + 16 - (-1)(a+4)}

Expand each product: a(a+2)=a2+2aa(a+2) = a^2 + 2a (a+4)(a+6)=a2+6a+4a+24=a2+10a+24(a+4)(a+6) = a^2 + 6a + 4a + 24 = a^2 + 10a + 24 (1)(a+4)=1(a+4)=a+4-(-1)(a+4) = 1(a+4) = a+4

Substitute these expanded forms back into the expression for yy: y=(a2+2a)+(a2+10a+24)+16+(a+4)y = \sqrt{(a^2 + 2a) + (a^2 + 10a + 24) + 16 + (a+4)}

Combine like terms inside the square root: y=(a2+a2)+(2a+10a+a)+(24+16+4)y = \sqrt{ (a^2 + a^2) + (2a + 10a + a) + (24 + 16 + 4) } y=2a2+13a+44y = \sqrt{ 2a^2 + 13a + 44 }

The expression inside the square root is a quadratic in aa. This quadratic does not appear to be a perfect square of an integer or a simple rational expression. The discriminant D=b24ac=1324(2)(44)=169352=183D = b^2 - 4ac = 13^2 - 4(2)(44) = 169 - 352 = -183, which is negative. This means the quadratic has no real roots and thus cannot be factored into linear terms with real coefficients.

Therefore, the simplified form of yy is: y=2(log23)2+13(log23)+44y = \sqrt{2(\log_2 3)^2 + 13(\log_2 3) + 44}

The question asks to solve for yy, which means to simplify the expression. The expression is simplified to its most compact form.