Solveeit Logo

Question

Mathematics Question on Probability

Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50.50 . A box is selected at random and a card is drawn from it. The number on the card is found to be a non-prime number. The probability that the card was drawn from Box I is :

A

817\frac{8}{17}

B

23\frac{2}{3}

C

417\frac{4}{17}

D

25\frac{2}{5}

Answer

817\frac{8}{17}

Explanation

Solution

Let B1B _{1} be the event where BoxIBox - I is selected. &B2\& B _{2} \rightarrow where box-II selected
P(B1)=P(B2)=12P \left( B _{1}\right)= P \left( B _{2}\right)=\frac{1}{2}
Let EE be the event where selected card is non prime.
For B1:B _{1}: Prime numbers
2,3,5,7,11,13,17,19,23,29\\{2,3,5,7,11,13,17,19,23,29\\}
For B2:B _{2}: Prime numbers :
31,37,41,43,47\\{31,37,41,43,47\\}
P(E)=P(B1)×P(EB1)+P(B2)P(EB2)P ( E ) = P \left( B _{1}\right) \times P \left(\frac{ E }{ B _{1}}\right)+ P \left( B _{2}\right) P \left(\frac{ E }{ B _{2}}\right)
=12×2030+12×1520=\frac{1}{2} \times \frac{20}{30}+\frac{1}{2} \times \frac{15}{20}
Required probability
P(B1E)=12×203012×2030+12×1520P \left(\frac{ B _{1}}{ E }\right)=\frac{\frac{1}{2} \times \frac{20}{30}}{\frac{1}{2} \times \frac{20}{30}+\frac{1}{2} \times \frac{15}{20}}
=2323+34=817=\frac{\frac{2}{3}}{\frac{2}{3}+\frac{3}{4}}=\frac{8}{17}