Solveeit Logo

Question

Question: both sides of the film is air. The angle of incidence is 60°. Find the minimum film thickness if ref...

both sides of the film is air. The angle of incidence is 60°. Find the minimum film thickness if reflected light is most intense for λ\lambda = 600 nm.

A

The condition for constructive interference (most intense reflected light) in a thin film, considering a phase change of π\pi at the first interface (air-film, as μfilm>μair\mu_{film} > \mu_{air}) and no phase change at the second interface (film-air), is given by: 2μtcosr=(2m1)λ22\mu t \cos r = \frac{(2m-1)\lambda}{2} where μ\mu is the refractive index of the film, tt is the film thickness, rr is the angle of refraction, λ\lambda is the wavelength of light, and mm is an integer. For the minimum film thickness, we take m=1m=1: 2μtcosr=λ22\mu t \cos r = \frac{\lambda}{2}.

B

Using Snell's Law (n1sini=n2sinrn_1 \sin i = n_2 \sin r): 1sin60=1.5sinr1 \cdot \sin 60^\circ = 1.5 \sin r. 32=32sinr\frac{\sqrt{3}}{2} = \frac{3}{2} \sin r. sinr=33\sin r = \frac{\sqrt{3}}{3}.

C

Now, calculate cosr\cos r: cosr=1sin2r=1(33)2=139=113=23=23\cos r = \sqrt{1 - \sin^2 r} = \sqrt{1 - \left(\frac{\sqrt{3}}{3}\right)^2} = \sqrt{1 - \frac{3}{9}} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}}.

D

Substitute the values into the condition for minimum thickness: 2(1.5)t(23)=600 nm22 \cdot (1.5) \cdot t \cdot \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = \frac{600 \text{ nm}}{2}. 3t23=300 nm3 \cdot t \cdot \frac{\sqrt{2}}{\sqrt{3}} = 300 \text{ nm}. t323=300 nmt \cdot \frac{3\sqrt{2}}{\sqrt{3}} = 300 \text{ nm}. t32=300 nmt \cdot \sqrt{3}\sqrt{2} = 300 \text{ nm}. t6=300 nmt \sqrt{6} = 300 \text{ nm}. t=3006 nmt = \frac{300}{\sqrt{6}} \text{ nm}. Rationalizing the denominator: t=30066 nm=506 nmt = \frac{300\sqrt{6}}{6} \text{ nm} = 50\sqrt{6} \text{ nm}.

Answer

The minimum film thickness is 50650\sqrt{6} nm.

Explanation

Solution

The condition for constructive interference in a thin film when light is reflected from a medium of lower refractive index to a medium of higher refractive index (air to film) is 2μtcosr=(m12)λ2\mu t \cos r = (m - \frac{1}{2})\lambda. Since the light is reflected from the film to air, there is no phase change at the second interface. For maximum intensity (constructive interference), the condition is 2μtcosr=(2m1)λ22\mu t \cos r = (2m-1)\frac{\lambda}{2}. For minimum thickness, m=1m=1, so 2μtcosr=λ22\mu t \cos r = \frac{\lambda}{2}.

Given: Refractive index of the film, μ=1.5\mu = 1.5 Angle of incidence, i=60i = 60^\circ Wavelength, λ=600\lambda = 600 nm

Using Snell's Law: n1sini=n2sinrn_1 \sin i = n_2 \sin r 1sin60=1.5sinr1 \cdot \sin 60^\circ = 1.5 \sin r 32=32sinr\frac{\sqrt{3}}{2} = \frac{3}{2} \sin r sinr=33\sin r = \frac{\sqrt{3}}{3}

Now, find cosr\cos r: cosr=1sin2r=1(33)2=139=113=23=23\cos r = \sqrt{1 - \sin^2 r} = \sqrt{1 - \left(\frac{\sqrt{3}}{3}\right)^2} = \sqrt{1 - \frac{3}{9}} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}}

Substitute the values into the condition for minimum thickness: 2(1.5)t(23)=600 nm22 \cdot (1.5) \cdot t \cdot \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = \frac{600 \text{ nm}}{2} 3t23=300 nm3 \cdot t \cdot \frac{\sqrt{2}}{\sqrt{3}} = 300 \text{ nm} t323=300 nmt \cdot \frac{3\sqrt{2}}{\sqrt{3}} = 300 \text{ nm} t32=300 nmt \cdot \sqrt{3}\sqrt{2} = 300 \text{ nm} t6=300 nmt \sqrt{6} = 300 \text{ nm} t=3006 nmt = \frac{300}{\sqrt{6}} \text{ nm}

Rationalizing the denominator: t=30066 nm=506 nmt = \frac{300\sqrt{6}}{6} \text{ nm} = 50\sqrt{6} \text{ nm}