Solveeit Logo

Question

Question: Bond dissociation enthalpy is used to defining enthalpy change of a reaction as \(\left( 1 \right)...

Bond dissociation enthalpy is used to defining enthalpy change of a reaction as
(1)\left( 1 \right) ΔHr=(Bonddissociationenthalpy)Reactant(Bonddissociationenthalpy)Product\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}
(2)\left( 2 \right) ΔHr=(Bonddissociationenthalpy)Product(Bonddissociationenthalpy)Reactant\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}
(3)(3) ΔH=(Bonddissociationenthalpy)Reactant+(Bonddissociationenthalpy)Product\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}
(4)\left( 4 \right) None of these

Explanation

Solution

The Bond dissociation enthalpy is an enthalpy used to break (Different atoms like A-B) one mole of the bond to give separate two gases atom (A+B). If the energy is used to break homolysis bonds (Same atom like A-A) to give free radicals ( A+A{A^ \bullet } + {A^ \bullet }).

Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In (1)\left( 1 \right) , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
ΔHr=(Bonddissociationenthalpy)Reactant(Bonddissociationenthalpy)Product\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}
In (2)\left( 2 \right) , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
ΔHr=(Bonddissociationenthalpy)Product(Bonddissociationenthalpy)Reactant\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}
In (3)\left( 3 \right), , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
ΔH=(Bonddissociationenthalpy)Reactant+(Bonddissociationenthalpy)Product\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}
As we, discussed above the definition and the equation (1)\left( 1 \right) are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is (1)\left( 1 \right) .

Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
1.1.Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
2.2.Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.