Solveeit Logo

Question

Question: Boiling point of benzene is \(353.23{\text{ K}}\). When \(1.8{\text{ g}}\) of non-volatile solute is...

Boiling point of benzene is 353.23 K353.23{\text{ K}}. When 1.8 g1.8{\text{ g}} of non-volatile solute is dissolved in 90 g90{\text{ g}} of benzene. Then the boiling point raised to 354.11 K354.11{\text{ K}}. Given K0(benzene)=2.53 K kg mol1{K_0}({\text{benzene}}) = 2.53{\text{ K kg mo}}{{\text{l}}^{ - 1}}. Then molecular mass of non-volatile substance is:
A. 58 g mol158{\text{ g mo}}{{\text{l}}^{ - 1}}
B. 120 g mol1120{\text{ g mo}}{{\text{l}}^{ - 1}}
C. 116 g mol1116{\text{ g mo}}{{\text{l}}^{ - 1}}
D. 60 g mol160{\text{ g mo}}{{\text{l}}^{ - 1}}

Explanation

Solution

The temperature at which the vapour pressure of any liquid becomes equal to the atmospheric pressure is known as the boiling point. The increase in the boiling point of a solvent when a solute is added is known as the elevation in boiling point. The elevation in boiling point can be calculated as the difference between the boiling points of the solution after adding the non-volatile solute and pure solvent.

Complete step by step answer:
Calculate the elevation in boiling point (ΔTb)\left( {\Delta {T_b}} \right) using the equation as follows:
ΔTb=Boiling point of the solution after adding non - volatile soluteBoiling point of pure solvent\Delta {T_b} = {\text{Boiling point of the solution after adding non - volatile solute}} - {\text{Boiling point of pure solvent}}
Where, ΔTb\Delta {T_b} is the boiling point elevation.
Substitute 354.11 K354.11{\text{ K}} for the boiling point of the solution after adding non-volatile solute, 353.23 K353.23{\text{ K}} for the boiling point of pure solvent benzene. Thus,
ΔTb=354.11 K353.23 K\Delta {T_b} = 354.11{\text{ K}} - 353.23{\text{ K}}
ΔTb=0.88 K\Delta {T_b} = 0.88{\text{ K}}
Thus, the elevation in boiling point is 0.88 K0.88{\text{ K}}.
Convert the units of mass of solvent benzene from g{\text{g}} to kg{\text{kg}} using the relation as follows:
1 g=1×103 kg1{\text{ g}} = 1 \times {10^{ - 3}}{\text{ kg}}
Thus,
Mass of benzene=90 g×1×103 kg1 g{\text{Mass of benzene}} = 90{\text{ }}{{\text{g}}} \times \dfrac{{1 \times {{10}^{ - 3}}{\text{ kg}}}}{{1{\text{ }}{{\text{g}}}}}
Mass of benzene=90×103 kg{\text{Mass of benzene}} = 90 \times {10^{ - 3}}{\text{ kg}}
Thus, the mass of the solvent benzene is 90×103 kg90 \times {10^{ - 3}}{\text{ kg}}.
Calculate the molecular mass of the non-volatile solute using the equation as follows:
Molecular mass of non - volatile solute=K0×Mass of soluteMass of solvent×1ΔTb{\text{Molecular mass of non - volatile solute}} = {K_0} \times \dfrac{{{\text{Mass of solute}}}}{{{\text{Mass of solvent}}}} \times \dfrac{1}{{\Delta {T_b}}}
Where, ΔTb\Delta {T_b} is the boiling point elevation,
K0{K_0} is the boiling point elevation constant
Substitute 2.53 K kg mol12.53{\text{ K kg mo}}{{\text{l}}^{ - 1}} for the boiling point elevation constant of benzene, 1.8 g1.8{\text{ g}} for the mass of the non-volatile solute, 90×103 kg90 \times {10^{ - 3}}{\text{ kg}} for the mass of the solvent benzene, 0.88 K0.88{\text{ K}} for the elevation in boiling point. Thus,
Molecular mass of non - volatile solute=2.53 K  kg mol1×1.8 g90×103  kg×10.88 K{\text{Molecular mass of non - volatile solute}} = 2.53{\text{ }}{{\text{K}}}{\text{ }}\ {{{\text{kg}}}}{\text{ mo}}{{\text{l}}^{ - 1}} \times \dfrac{{1.8{\text{ g}}}}{{90 \times {{10}^{ - 3}}{\text{ }}\ {{{\text{kg}}}}}} \times \dfrac{1}{{0.88{\text{ }}{{\text{K}}}}}
Molecular mass of non - volatile solute=57.5 g mol1{\text{Molecular mass of non - volatile solute}} = 57.5{\text{ g mo}}{{\text{l}}^{ - 1}}
Thus, the molecular mass of the non-volatile solute is 58 g mol158{\text{ g mo}}{{\text{l}}^{ - 1}}.

Thus, the correct option is (A) 58 g mol158{\text{ g mo}}{{\text{l}}^{ - 1}}.

Note:
The elevation in the boiling point of the solvent is inversely proportional to the molecular mass of the solute added to the solvent. The boiling point elevation decreases as the molar mass of the solute increases. Thus, an increase in molar mass of solute has a small effect on the boiling point.