Solveeit Logo

Question

Physics Question on Atoms

Bohr model is applied to a particle of mass m'm' and charge q'q' is moving in a plane under the influence of a transverse magnetic field B'B'. The energy of the charged particle in the nthnth level will be (h=h = Planck's constant)

A

2nhqB/πm2nhq\,B/\pi\, m

B

nhqB/2πmnhq\,B/2\pi\, m

C

nhqB/4πmnhq\,B/4\pi\, m

D

nhqB/πmnhq\,B/\pi\, m

Answer

nhqB/4πmnhq\,B/4\pi\, m

Explanation

Solution

For a particle moving in a magnetic field, then applied two forces are equal.
centripetal force (Fc)=\left(F_{c}\right)= magnetic force (Fm)\left(F_{m}\right)
mv2r=qvB\Rightarrow \frac{m v^{2}}{r}=q v B
mv2=qB(vr)\Rightarrow m v^{2}=q B(v r)...(i)
Also, from Bohr's model,
mvr=nh2πm v r=\frac{n h}{2 \pi}
vr=nh2πm\therefore v r=\frac{n h}{2 \pi m}...(ii)
From E (i) and (ii), we get
mv2=nh2πmqBm v^{2}=\frac{n h}{2 \pi m} \cdot q B \dots(iii)
Energy of the electron moving in nn h orbit,
E=12mv2=12nhqB2πmE =\frac{1}{2} \cdot m v^{2}=\frac{1}{2} \cdot \frac{n h q B}{2 \pi m}(using E(iii)
E=nhqB4πm\Rightarrow E=\frac{n h q B}{4 \pi m}
Hence, the energy of the charged particle in the nth level will be nhqB4πm\frac{n h q B}{4 \pi m}.