Solveeit Logo

Question

Question: Block 'A' is hanging from a vertical spring and is at rest. Block 'B' strikes the block 'A' with vel...

Block 'A' is hanging from a vertical spring and is at rest. Block 'B' strikes the block 'A' with velocity 'v' and sticks to it. Then the value of 'v' for which the spring just attains natural length is –

A

60mg2k\sqrt { \frac { 60 \mathrm { mg } ^ { 2 } } { \mathrm { k } } }

B

6mg2k\sqrt { \frac { 6 \mathrm { mg } ^ { 2 } } { \mathrm { k } } }

C

10mg2k\sqrt { \frac { 10 \mathrm { mg } ^ { 2 } } { \mathrm { k } } }

D

None of these

Answer

6mg2k\sqrt { \frac { 6 \mathrm { mg } ^ { 2 } } { \mathrm { k } } }

Explanation

Solution

The initial extention in spring is X0 = mgk\frac { \mathrm { mg } } { \mathrm { k } } .

Just after collision of B with A the speed of combined mass is v2\frac { v } { 2 } .

For the spring to just attain natural length the combined mass must rise up by X0 = mgk\frac { \mathrm { mg } } { \mathrm { k } } and comes to rest.

Applying conservation of energy between initial and final states

12\frac { 1 } { 2 } 2 m [v2]2\left[ \frac { \mathrm { v } } { 2 } \right] ^ { 2 } + 12\frac { 1 } { 2 } k [mgk]2\left[ \frac { \mathrm { mg } } { \mathrm { k } } \right] ^ { 2 } = 2mg [mgk]\left[ \frac { \mathrm { mg } } { \mathrm { k } } \right]

solving we get v = 6mg2k\sqrt { \frac { 6 \mathrm { mg } ^ { 2 } } { \mathrm { k } } } .