Solveeit Logo

Question

Question: The (m + 1)ᵗʰ term of $\left(\frac{x}{y}+\frac{y}{x}\right)^{2m+1}$ is:...

The (m + 1)ᵗʰ term of (xy+yx)2m+1\left(\frac{x}{y}+\frac{y}{x}\right)^{2m+1} is:

A

independent of x

B

a constant

C

depends on the ratio x/y and m

D

none of these

Answer

(C) depends on the ratio x/y and m

Explanation

Solution

The general term of the binomial expansion (a+b)n(a+b)^n is given by Tr+1=nCranrbrT_{r+1} = ^nC_r a^{n-r} b^r. In this case, a=xya = \frac{x}{y}, b=yxb = \frac{y}{x}, and n=2m+1n = 2m+1. We need the (m+1)th(m+1)^{th} term, so r+1=m+1    r=mr+1 = m+1 \implies r=m. The (m+1)th(m+1)^{th} term is Tm+1=2m+1Cm(xy)(2m+1)m(yx)m=2m+1Cm(xy)m+1(yx)m=2m+1Cmxm+1ym+1ymxm=2m+1Cmxm+1mym(m+1)=2m+1Cmx1y1=2m+1CmxyT_{m+1} = ^{2m+1}C_m \left(\frac{x}{y}\right)^{(2m+1)-m} \left(\frac{y}{x}\right)^m = ^{2m+1}C_m \left(\frac{x}{y}\right)^{m+1} \left(\frac{y}{x}\right)^m = ^{2m+1}C_m \frac{x^{m+1}}{y^{m+1}} \frac{y^m}{x^m} = ^{2m+1}C_m x^{m+1-m} y^{m-(m+1)} = ^{2m+1}C_m x^1 y^{-1} = ^{2m+1}C_m \frac{x}{y}. This term depends on the ratio xy\frac{x}{y} and on mm (through the binomial coefficient 2m+1Cm^{2m+1}C_m).