Solveeit Logo

Question

Question: The coefficient of $x^r$ in the expansion of $(1-2x)^{-1/2}$ is...

The coefficient of xrx^r in the expansion of (12x)1/2(1-2x)^{-1/2} is

A

(1) (2r)!(r!)2\frac{(2r)!}{(r!)^2}

B

(2) (2r)!2r(r!)2\frac{(2r)!}{2^r(r!)^2}

C

(3) (2r)!(r!)222r\frac{(2r)!}{(r!)^22^{2r}}

D

(4) (2r)!2r(r+1)!(r1)!\frac{(2r)!}{2^r(r+1)!(r-1)!}

Answer

(2r)!2r(r!)2\frac{(2r)!}{2^r(r!)^2}

Explanation

Solution

The coefficient of xrx^r in (12x)1/2(1-2x)^{-1/2} is given by (1/2r)(2)r\binom{-1/2}{r}(-2)^r.

We have (1/2r)=(1/2)(1/21)(1/2r+1)r!=(1/2)(3/2)((2r1)/2)r!=(1)r(135(2r1))2rr!\binom{-1/2}{r} = \frac{(-1/2)(-1/2-1)\dots(-1/2-r+1)}{r!} = \frac{(-1/2)(-3/2)\dots(-(2r-1)/2)}{r!} = \frac{(-1)^r (1 \cdot 3 \cdot 5 \dots (2r-1))}{2^r r!}.

The coefficient of xrx^r is (1/2r)(2)r=(1)r(135(2r1))2rr!(2)r=135(2r1)r!\binom{-1/2}{r}(-2)^r = \frac{(-1)^r (1 \cdot 3 \cdot 5 \dots (2r-1))}{2^r r!} (-2)^r = \frac{1 \cdot 3 \cdot 5 \dots (2r-1)}{r!}.

We know that 135(2r1)=(2r)!246(2r)=(2r)!2rr!1 \cdot 3 \cdot 5 \dots (2r-1) = \frac{(2r)!}{2 \cdot 4 \cdot 6 \dots (2r)} = \frac{(2r)!}{2^r r!}.

Substituting this back, the coefficient of xrx^r is 1r!((2r)!2rr!)=(2r)!2r(r!)2\frac{1}{r!} \left( \frac{(2r)!}{2^r r!} \right) = \frac{(2r)!}{2^r (r!)^2}.