Solveeit Logo

Question

Question: Q Find Min $U_o$ such that stone will reach other planet....

Q Find Min UoU_o such that stone will reach other planet.

Answer

5GMoR2516\sqrt{\frac{5GM_o}{R}} \frac{2\sqrt{5}-1}{\sqrt{6}}

Explanation

Solution

To find the minimum initial velocity UoU_o, we use the principle of conservation of energy. The stone is launched from the surface of Planet 1 (mass 25Mo25M_o, radius 2R2R) towards Planet 2 (mass 5Mo5M_o, radius RR). The distance between their centers is 6R6R.

The point of zero net gravitational force is at a distance rr from Planet 1, where: G(25Mo)m0r2=G(5Mo)m0(6Rr)2\frac{G(25M_o)m_0}{r^2} = \frac{G(5M_o)m_0}{(6R-r)^2} Solving this yields r=3(55)2Rr = \frac{3(5-\sqrt{5})}{2}R. This is the point of maximum potential energy.

Initial potential energy: Vi=G(25Mo)m02RG(5Mo)m04R=55GMom04RV_i = -\frac{G(25M_o)m_0}{2R} - \frac{G(5M_o)m_0}{4R} = -\frac{55GM_om_0}{4R} Potential energy at maximum: Vmax=5GMom03R(3+5)V_{max} = -\frac{5GM_om_0}{3R}(3+\sqrt{5})

For the stone to reach the other planet, its initial total energy must be at least VmaxV_{max}. The minimum velocity occurs when the stone has zero kinetic energy at this point. 12m0Uo2+Vi=Vmax\frac{1}{2}m_0 U_o^2 + V_i = V_{max} 12m0Uo2=VmaxVi=5GMom03R(3+5)+55GMom04R\frac{1}{2}m_0 U_o^2 = V_{max} - V_i = -\frac{5GM_om_0}{3R}(3+\sqrt{5}) + \frac{55GM_om_0}{4R} Uo2=2GMoR(53(3+5)+554)=2GMoR(5553+554)U_o^2 = \frac{2GM_o}{R} \left( -\frac{5}{3}(3+\sqrt{5}) + \frac{55}{4} \right) = \frac{2GM_o}{R} \left( -5 - \frac{5\sqrt{5}}{3} + \frac{55}{4} \right) Uo2=2GMoR(60205+16512)=2GMoR(10520512)U_o^2 = \frac{2GM_o}{R} \left( \frac{-60 - 20\sqrt{5} + 165}{12} \right) = \frac{2GM_o}{R} \left( \frac{105 - 20\sqrt{5}}{12} \right) Uo2=GMoR(1052056)=GMoR5(2145)6=5GMo6R(251)2U_o^2 = \frac{GM_o}{R} \left( \frac{105 - 20\sqrt{5}}{6} \right) = \frac{GM_o}{R} \frac{5(21 - 4\sqrt{5})}{6} = \frac{5GM_o}{6R} (2\sqrt{5}-1)^2 Uo=5GMoR2516U_o = \sqrt{\frac{5GM_o}{R}} \frac{2\sqrt{5}-1}{\sqrt{6}}