Solveeit Logo

Question

Question: Find min $U_0$ such that stone will reach other planet....

Find min U0U_0 such that stone will reach other planet.

Answer

15GM02R\sqrt{\frac{15 G M_0}{2R}}

Explanation

Solution

The total energy of the stone is conserved. For the stone to reach the surface of the second planet, its total energy must be at least equal to the potential energy at the surface of the second planet, assuming zero kinetic energy at arrival.

Initial potential energy: Uinitial=GM1mR1GM2mDR1U_{initial} = -\frac{G M_1 m}{R_1} - \frac{G M_2 m}{D-R_1} Given M1=25M0M_1 = 25M_0, R1=2RR_1 = 2R, M2=5M0M_2 = 5M_0, R2=RR_2 = R, D=6RD = 6R, and m=M0m = M_0. Uinitial=G(25M0)M02RG(5M0)M06R2R=25GM022R5GM024R=55GM024RU_{initial} = -\frac{G (25M_0) M_0}{2R} - \frac{G (5M_0) M_0}{6R-2R} = -\frac{25 G M_0^2}{2R} - \frac{5 G M_0^2}{4R} = -\frac{55 G M_0^2}{4R}

Final potential energy at the surface of the second planet: Ufinal=GM1mDR2GM2mR2U_{final} = -\frac{G M_1 m}{D-R_2} - \frac{G M_2 m}{R_2} Ufinal=G(25M0)M06RRG(5M0)M0R=25GM025R5GM02R=5GM02R5GM02R=10GM02RU_{final} = -\frac{G (25M_0) M_0}{6R-R} - \frac{G (5M_0) M_0}{R} = -\frac{25 G M_0^2}{5R} - \frac{5 G M_0^2}{R} = -\frac{5 G M_0^2}{R} - \frac{5 G M_0^2}{R} = -\frac{10 G M_0^2}{R}

By conservation of energy (Einitial=EfinalE_{initial} = E_{final}), with Einitial=12M0U02+UinitialE_{initial} = \frac{1}{2} M_0 U_0^2 + U_{initial} and Efinal=UfinalE_{final} = U_{final} (minimum velocity implies zero kinetic energy at destination): 12M0U02+Uinitial=Ufinal\frac{1}{2} M_0 U_0^2 + U_{initial} = U_{final} 12M0U02=UfinalUinitial\frac{1}{2} M_0 U_0^2 = U_{final} - U_{initial} 12M0U02=10GM02R(55GM024R)=55GM024R40GM024R=15GM024R\frac{1}{2} M_0 U_0^2 = -\frac{10 G M_0^2}{R} - (-\frac{55 G M_0^2}{4R}) = \frac{55 G M_0^2}{4R} - \frac{40 G M_0^2}{4R} = \frac{15 G M_0^2}{4R} U02=2×15GM024RM0=15GM02RU_0^2 = \frac{2 \times 15 G M_0^2}{4R M_0} = \frac{15 G M_0}{2R} U0=15GM02RU_0 = \sqrt{\frac{15 G M_0}{2R}}