Solveeit Logo

Question

Question: Between the plates of a parallel plate condenser, a plate of thickness \(k _ { 2 }\). The potential ...

Between the plates of a parallel plate condenser, a plate of thickness k2k _ { 2 }. The potential difference across the condenser will be

A

QAε0(t1k1+t2k2)\frac { Q } { A \varepsilon _ { 0 } } \left( \frac { t _ { 1 } } { k _ { 1 } } + \frac { t _ { 2 } } { k _ { 2 } } \right)

B

ε0QA(t1k1+t2k2)\frac { \varepsilon _ { 0 } Q } { A } \left( \frac { t _ { 1 } } { k _ { 1 } } + \frac { t _ { 2 } } { k _ { 2 } } \right)

C

QAε0(k1t1+k2t2)\frac { Q } { A \varepsilon _ { 0 } } \left( \frac { k _ { 1 } } { t _ { 1 } } + \frac { k _ { 2 } } { t _ { 2 } } \right)

D

ε0QA(k1t1+k2t2)\frac { \varepsilon _ { 0 } Q } { A } \left( k _ { 1 } t _ { 1 } + k _ { 2 } t _ { 2 } \right)

Answer

QAε0(t1k1+t2k2)\frac { Q } { A \varepsilon _ { 0 } } \left( \frac { t _ { 1 } } { k _ { 1 } } + \frac { t _ { 2 } } { k _ { 2 } } \right)

Explanation

Solution

Potential difference across the condenser

V=V1+V2=E1t1+E2t2=σK1ε0t1+σK2ε0t2V = V _ { 1 } + V _ { 2 } = E _ { 1 } t _ { 1 } + E _ { 2 } t _ { 2 } = \frac { \sigma } { K _ { 1 } \varepsilon _ { 0 } } t _ { 1 } + \frac { \sigma } { K _ { 2 } \varepsilon _ { 0 } } t _ { 2 }

V=σε0(t1K1+t2K2)=QAε0(t1K1+t2K2)V = \frac { \sigma } { \varepsilon _ { 0 } } \left( \frac { t _ { 1 } } { K _ { 1 } } + \frac { t _ { 2 } } { K _ { 2 } } \right) = \frac { Q } { A \varepsilon _ { 0 } } \left( \frac { t _ { 1 } } { K _ { 1 } } + \frac { t _ { 2 } } { K _ { 2 } } \right)