Solveeit Logo

Question

Question: Between the plates of a parallel plate capacitor of plate area A and capacity 0.025µF, a metal plate...

Between the plates of a parallel plate capacitor of plate area A and capacity 0.025µF, a metal plate of area, A and thickness equal to 13\frac{1}{3} of the separation between the plates of the capacitor is introduced. If the capacitor is charged to 100 V and battery is removed, then the amount of work done to remove the metal plate from the capacitor is

A

4.17 x 10⁻⁵ J

Answer

4.17 x 10⁻⁵ J

Explanation

Solution

  1. The original capacitor has capacitance

    C0=0.025μF.C_0=0.025\mu F.
  2. The capacitor is charged to 100V100\,V (battery removed later), so the charge is

    Q=C0V=0.025×106F×100V=2.5×106C.Q=C_0\,V=0.025\times10^{-6}\,F\times 100\,V=2.5\times10^{-6}\,C.
  3. A metal plate of thickness t=d3t=\frac{d}{3} is fully inserted between the plates (but does not contact them). This reduces the effective distance for the dielectric (air) to

    deff=dt=dd3=2d3.d_{\text{eff}}=d-t=d-\frac{d}{3}=\frac{2d}{3}.

    Thus, the new capacitance becomes

    C=ϵ0Adeff=ϵ0A2d3=32ϵ0Ad=32C0.C'=\frac{\epsilon_0\,A}{d_{\text{eff}}}=\frac{\epsilon_0\,A}{\frac{2d}{3}}=\frac{3}{2}\,\frac{\epsilon_0\,A}{d}=\frac{3}{2}\,C_0.

    Numerically,

    C=32×0.025μF=0.0375μF.C'=\frac{3}{2}\times0.025\mu F=0.0375\mu F.
  4. With the battery disconnected, the charge remains constant.

    • Energy when the metal plate is inserted:

      Uin=Q22C=Q22×32C0=Q23C0.U_{\text{in}}=\frac{Q^2}{2\,C'}=\frac{Q^2}{2\times\frac{3}{2}\,C_0}=\frac{Q^2}{3\,C_0}.
    • Energy when the plate is removed (i.e. original capacitor):

      Ufinal=Q22C0.U_{\text{final}}=\frac{Q^2}{2\,C_0}.
  5. The work done in removing the plate (against the attractive force) equals the increase in stored energy:

    W=ΔU=UfinalUin=Q22C0Q23C0=Q26C0.W=\Delta U=U_{\text{final}}-U_{\text{in}}=\frac{Q^2}{2\,C_0}-\frac{Q^2}{3\,C_0}=\frac{Q^2}{6\,C_0}.
  6. Substitute the known values:

    Q2=(2.5×106)2=6.25×1012C2,Q^2=(2.5\times10^{-6})^2=6.25\times10^{-12}\,C^2, C0=0.025×106F.C_0=0.025\times10^{-6}\,F.

    Then,

    W=6.25×10126×0.025×106=6.25×10121.5×107=4.17×105J.W=\frac{6.25\times10^{-12}}{6\times0.025\times10^{-6}}=\frac{6.25\times10^{-12}}{1.5\times10^{-7}}=4.17\times10^{-5}\,J.