Solveeit Logo

Question

Question: $$\begin{vmatrix} x & x^2 & 1+px^3 \\ y & y^2 & 1+py^3 \\ z & z^2 & 1+pz^3 \end{vmatrix} = (1+pxyz)(...

xx21+px3yy21+py3zz21+pz3=(1+pxyz)(xy)(yz)(zx), where p is any scalar\begin{vmatrix} x & x^2 & 1+px^3 \\ y & y^2 & 1+py^3 \\ z & z^2 & 1+pz^3 \end{vmatrix} = (1+pxyz)(x-y)(y-z)(z-x), \text{ where p is any scalar}

Answer

The equality holds true.

Explanation

Solution

The given determinant is: D=xx21+px3yy21+py3zz21+pz3D = \begin{vmatrix} x & x^2 & 1+px^3 \\ y & y^2 & 1+py^3 \\ z & z^2 & 1+pz^3 \end{vmatrix}

We can use the property of determinants that if elements of a column (or row) are expressed as a sum of two terms, the determinant can be expressed as the sum of two determinants. D=xx21yy21zz21+xx2px3yy2py3zz2pz3D = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + \begin{vmatrix} x & x^2 & px^3 \\ y & y^2 & py^3 \\ z & z^2 & pz^3 \end{vmatrix}

Let's evaluate the first determinant, D1D_1: D1=xx21yy21zz21D_1 = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} Apply row operations R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1: D1=xx21yxy2x20zxz2x20D_1 = \begin{vmatrix} x & x^2 & 1 \\ y-x & y^2-x^2 & 0 \\ z-x & z^2-x^2 & 0 \end{vmatrix} Expand along the third column: D1=1yxy2x2zxz2x2D_1 = 1 \cdot \begin{vmatrix} y-x & y^2-x^2 \\ z-x & z^2-x^2 \end{vmatrix} Factor the terms in the second column: y2x2=(yx)(y+x)y^2-x^2 = (y-x)(y+x) and z2x2=(zx)(z+x)z^2-x^2 = (z-x)(z+x). D1=yx(yx)(y+x)zx(zx)(z+x)D_1 = \begin{vmatrix} y-x & (y-x)(y+x) \\ z-x & (z-x)(z+x) \end{vmatrix} Take out common factors (yx)(y-x) from the first row and (zx)(z-x) from the second row: D1=(yx)(zx)1y+x1z+xD_1 = (y-x)(z-x) \begin{vmatrix} 1 & y+x \\ 1 & z+x \end{vmatrix} Evaluate the 2×22 \times 2 determinant: D1=(yx)(zx)[1(z+x)1(y+x)]D_1 = (y-x)(z-x) [1 \cdot (z+x) - 1 \cdot (y+x)] D1=(yx)(zx)[z+xyx]D_1 = (y-x)(z-x) [z+x-y-x] D1=(yx)(zx)(zy)D_1 = (y-x)(z-x)(z-y) To match the form (xy)(yz)(zx)(x-y)(y-z)(z-x), we rewrite the terms: (yx)=(xy)(y-x) = -(x-y) (zy)=(yz)(z-y) = -(y-z) So, D1=((xy))(zx)((yz))=(xy)(yz)(zx)D_1 = (-(x-y))(z-x)(-(y-z)) = (x-y)(y-z)(z-x).

Now, let's evaluate the second determinant, D2D_2: D2=xx2px3yy2py3zz2pz3D_2 = \begin{vmatrix} x & x^2 & px^3 \\ y & y^2 & py^3 \\ z & z^2 & pz^3 \end{vmatrix} Take out common factor pp from the third column: D2=pxx2x3yy2y3zz2z3D_2 = p \begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix} Take out common factors xx from the first row, yy from the second row, and zz from the third row: D2=pxyz1xx21yy21zz2D_2 = pxyz \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} The remaining determinant is a Vandermonde determinant, which evaluates to (yx)(zx)(zy)(y-x)(z-x)(z-y). D2=pxyz(yx)(zx)(zy)D_2 = pxyz (y-x)(z-x)(z-y) Using the same sign adjustments as for D1D_1: D2=pxyz((xy))(zx)((yz))=pxyz(xy)(yz)(zx)D_2 = pxyz (-(x-y))(z-x)(-(y-z)) = pxyz (x-y)(y-z)(z-x)

Finally, sum D1D_1 and D2D_2: D=D1+D2D = D_1 + D_2 D=(xy)(yz)(zx)+pxyz(xy)(yz)(zx)D = (x-y)(y-z)(z-x) + pxyz (x-y)(y-z)(z-x) Factor out the common term (xy)(yz)(zx)(x-y)(y-z)(z-x): D=(1+pxyz)(xy)(yz)(zx)D = (1+pxyz)(x-y)(y-z)(z-x) This matches the given right-hand side of the equation.

The equality holds true.