Question
Question: $\begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix} = 3$ then value of $\begin{...
1xx2xx21x21x=3 then value of x3−10x−x40x−x4x3−1x−x4x3−10 is

9
Solution
Let the first determinant be D1 and the second determinant be D2. D1=1xx2xx21x21x
We can evaluate D1 by expanding along the first row: D1=1(x2⋅x−1⋅1)−x(x⋅x−1⋅x2)+x2(x⋅1−x2⋅x2) D1=(x3−1)−x(x2−x2)+x2(x−x4) D1=x3−1−x(0)+x3−x6 D1=x3−1+x3−x6=2x3−x6−1
Alternatively, we can use determinant properties. Apply the operation C1→C1+C2+C3: D1=1+x+x2x+x2+1x2+1+xxx21x21x=(1+x+x2)111xx21x21x
Now apply R2→R2−R1 and R3→R3−R1: D1=(1+x+x2)100xx2−x1−xx21−x2x−x2
Expand along the first column: D1=(1+x+x2)[1⋅((x2−x)(x−x2)−(1−x2)(1−x))] D1=(1+x+x2)[x(x−1)(−x)(x−1)−(1−x)(1+x)(1−x)] D1=(1+x+x2)[−x2(x−1)2−(1−x)2(1+x)] Since (x−1)2=(1−x)2, D1=(1+x+x2)[−(x−1)2(x2+(1+x))] D1=(1+x+x2)[−(x−1)2(x2+x+1)] D1=−(1+x+x2)2(x−1)2=−[(1+x+x2)(x−1)]2 Using the identity (a−b)(a2+ab+b2)=a3−b3, we have (x−1)(x2+x+1)=x3−1. So, D1=−(x3−1)2.
We are given that D1=3. Therefore, −(x3−1)2=3, which implies (x3−1)2=−3.
Now consider the second determinant D2: D2=x3−10x−x40x−x4x3−1x−x4x3−10 Notice that x−x4=x(1−x3)=−x(x3−1). Let A=x3−1. Then x−x4=−xA. The determinant becomes: D2=A0−xA0−xAA−xAA0
Expand D2 along the first row: D2=A((−xA)(0)−A⋅A)−0⋅(…)+(−xA)(0⋅A−(−xA)(−xA)) D2=A(0−A2)−xA(0−x2A2) D2=−A3−xA(−x2A2) D2=−A3+x3A3 D2=A3(x3−1) Substitute A=x3−1: D2=(x3−1)3(x3−1)=(x3−1)4.
We have (x3−1)2=−3. We need to find (x3−1)4. (x3−1)4=((x3−1)2)2=(−3)2=9.
The value of the second determinant is 9.