Solveeit Logo

Question

Question: $\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1$...

11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q=1\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1

Answer

1

Explanation

Solution

The determinant is simplified using elementary row operations to transform it into an upper triangular matrix.

  1. R2R22R1R_2 \rightarrow R_2 - 2R_1
  2. R3R33R1R_3 \rightarrow R_3 - 3R_1
  3. R3R33R2R_3 \rightarrow R_3 - 3R_2

These operations result in the determinant of an upper triangular matrix:

11+p1+p+q012+p001\begin{vmatrix} 1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 0 & 1 \end{vmatrix}

The determinant of an upper triangular matrix is the product of its diagonal elements. Determinant = 1×1×1=11 \times 1 \times 1 = 1.